

1st CDT Conference 2020

ROBOTICS SOLUTIONS TO STRAWBERRY HARVESTING (AND LOGISTICS)

Prof Marc Hanheide

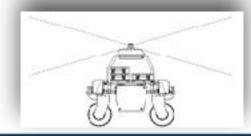
(with materials from Grzegorz Cielniak, Raymond Kirk and Sariah Mghames and others)

Lincoln Centre for Autonomous Systems (L-CAS) University of Lincoln, UK

Challenges in Soft Fruit Production

Reliance of manual labour due to complex operations

Shrinking workforce due to socio-political pressures and ageing population



Thorvald - a modular mobile platform

Dedicated Strawberry Production Site

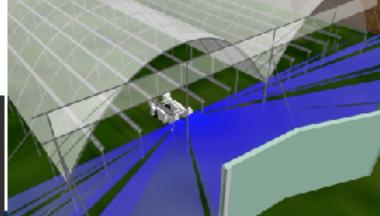
Realistic environment for data collection, algorithm development and field testing

RASberry - https://rasberryproject.com/

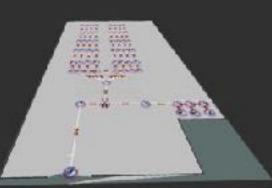
RASberry: Robotic and Autonomous Systems for Berry Production

- Field Logistics and Autonomy (also working with Humans)
- Fruit Perception (for picking, phenotypic and yield prediction)
- Autonomous Picking Solutions

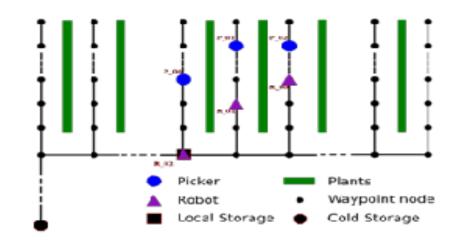
Field Logistics and Autonomy


Navigation and Autonomy

hybrid GPS & laser-based navigation


Realistic simulation environments

Automated tuning of parameters (ICRA 2020)



Fleet Coordination

Avoiding deadlocks and moving robots in the field efficiently.

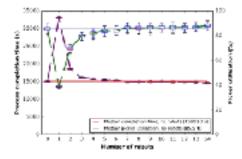
- Discrete Event Simulator (DES)
- Picker and robot agents with discrete states and transitions
- Navigation environment is discretised
- Really fast simulations compared to continuous-time simulations

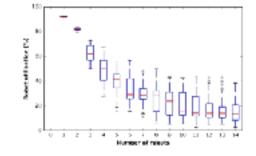
RASberry DES Visualisation

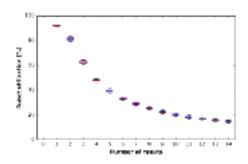
Das, G. P. and Cielniak, G. and From, P. J. and Hanheide, M. (2018). Discrete Event Simulations for Scalability Analysis of Robotic In-Field

Fleet Coordination

Normal Operation


- A picker uses "Call-A-Robot" to request for a robot
- The coordinator adds the call to a task queue.
- During processing of the task,
 - The coordinator assigns an idle robot to the picker.
 - The robot goes to the picker and collect full trays
 - The picker can set "tray loaded" using "Call-A-Robot"
 - The robot goes to storage and trays are unloaded
 - The robot returns to its base station





Fleet Coordination - DES

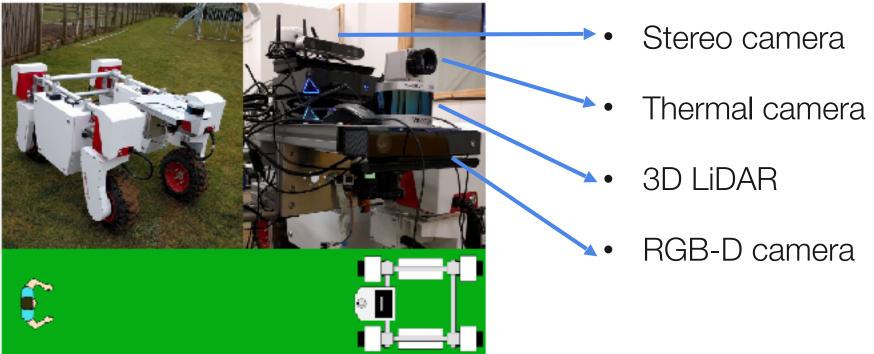
- Anticipatory scheduling (predicting when the robot might be needed)
- Analysis of scalability in real-world environments (#pickers vs. #robots)
- Useful for global trajectory planning for individual robots

Perception of Humans

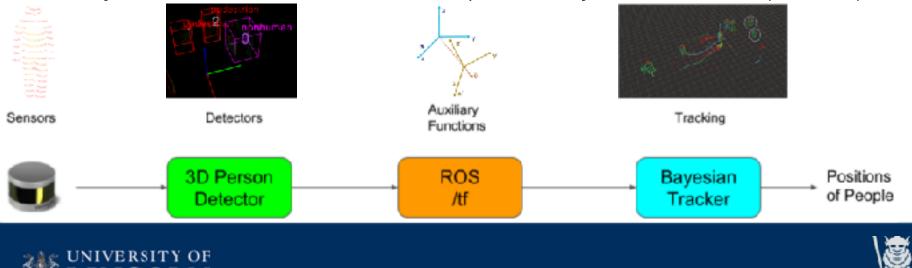
Motivations:

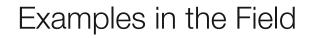
- <u>Safety</u> during navigation
- Approach or avoid workers in the field

Challenges:

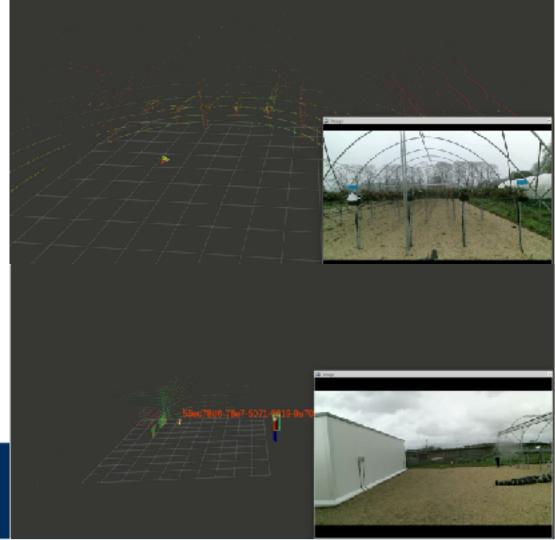

- Sensor noise, dirt
- Occlusions, lighting, misclassification
- Wide open areas, uneven terrain

Sensors





Human Detection and Tracking


- Independent sw modules for human detection are assigned to each sensor
- Detections are transformed from (local) sensor to (global) robot frame of ref.
- Finally combined in a multisensor/multiperson Bayesian estimator (i.e. UKF)

Single person

Multiple people

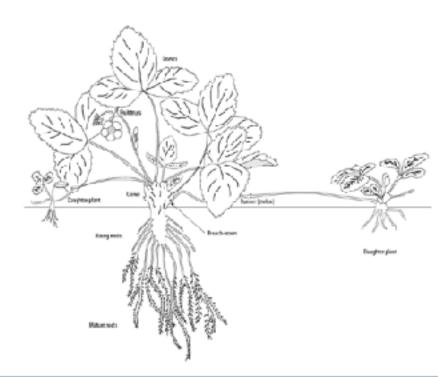
Fruit Perception and Tracking

Robotic Perception for the Soft Fruit Industry

Research Question

Where are t	the berries?	Where are the b real world coord		How can we harvest the berries?	Can we harvest we can't see	Have I seer befc	
				Solution	ect		
Contrast Contrast Contrast	Berries From oles Analysis.	Enables Harvo Applications an Agronom	d Virtual	Reduces labor demand, damage to berries, increases harvest throughput.	Improves detecti harvesting ra	Fruit count i maturity map estima	os, and yield

Technical Challenges


Outdoors - changing lighting/weather conditions

Natural variation of fruit/plants in appearance, shape, orientation

Temporal changes and metamorphosis due to growth

Occlusions by other berries, leaves, trellis

Limitations of the current sensing technology

L*a*b*Fruits

Problem

Environmental features outdoors (sunlight intensity, weather conditions, etc.) affect perceptual appearance of objects and consequently the performance of detection systems.

Solution

We fuse RGB data with bio-inspired features to classify produce over a greater number of conditions.

🛓 sensors

L'a"b"Fruits: A Rapid and Robust Outdoor Fruit Detection System Combining Bio-Inspired Features with One-Stage Deep Learning Networks

WREN

Reprinted Kirk ^{1,1} 🔍 Computer Chinick ^{1,1} and Ministel Wangar 🧐

- Linearity Converter Action and Systems, Winador' Computer Minroe, Enderwidger Encode, Lancent, AB 475-436.
- ¹ Statistical success, Achieved integrates Server, University of Statistical Society, 2015 in successful field as a fit.
- Conspectes restricteduces 3.Coperacettech.aut/CC1

Excited: 3 Strender 20 Auspiele S December 20 9 Auflided (Secury 202

Addresses in a constitute of approximate populate approximate for our momentary detect and the design populate in and inductive interface within the design interface in the design populate in the design interface in the design population is and the design interface interface approximate in the momentary interface interface approximate interface and the design and the design in the momentary design and the design and the design and the design in the design in the design and the des

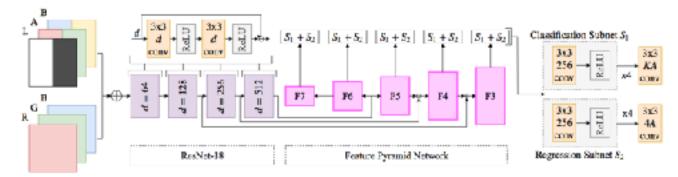
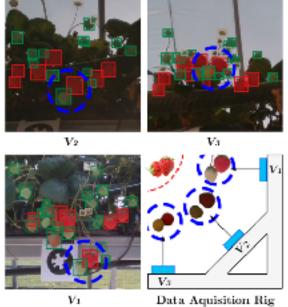
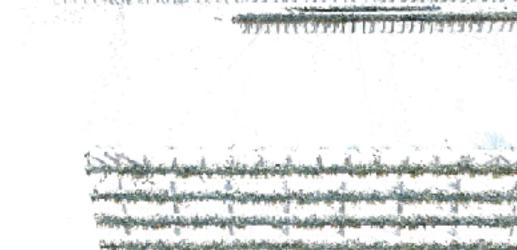



Figure L*a*b*Fruits: Human-inspired deep learning architecture.

Human-Inspired Features Colour Opponency



Data Collection (summer 2019)

:OLN

LINC

Viewpoint	Training	Validation	Total
V_1	120 (80%)	10 (6.6%)	130
V_2	0 (0%)	10 (6.6%)	10
V_3	0 (0%)	10 (6.6%)	10
Total	120 (80%)	30 (20%)	150

Bounding Boxes	Ripe	Unripe	Total
Training	673	2680	3353
Validation	217	649	886
Total	890	3329	4219

Fruit Detection

Results

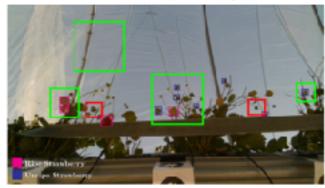
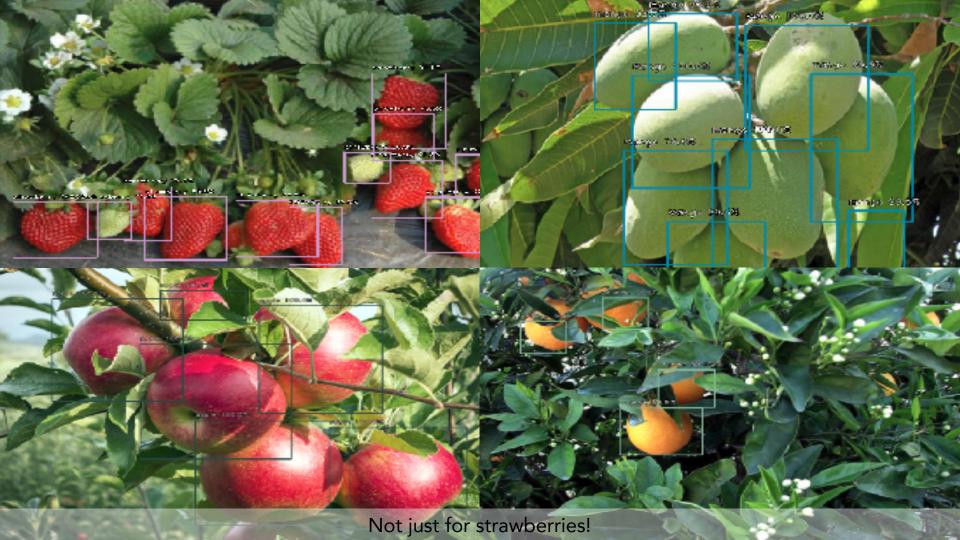

Class	View	Score	RGB	CIE Lab	Early Fusion
Both Classes	V_1	F ₁	0.744	0.710	0.747
Both Classes	V_1	AP	0.722	0.695	0.748
Both Classes	V_1	AR	0.870	0.844	0.909
Both Classes	V_{2-3}	F_1	0.680	0.622	0.704
Both Classes	V_{2-3}	AP	0.659	0.586	0.694
Both Classes	V_{2-3}	AR	0.812	0.761	0.851
Ripe Strawberry	V_1	F_1	0.683	0.625	0.697
Ripe Strawberry	V_1	AP	0.616	0.571	0.678
Ripe Strawberry	V_1	AR	0.807	0.767	0.892
Ripe Strawberry	V_{2-3}	F_1	0.697	0.662	0.729
Ripe Strawberry	V_{2-3}	AP	0.659	0.621	0.719
Ripe Strawberry	V_{2-3}	AR	0.806	0.777	0.877
Unripe Strawberry	V_1	F_1	0.805	0.795	0.797
Unripe Strawberry	V_1	AP	0.828	0.819	0.818
Unripe Strawberry	Vi	AR	0.933	0.922	0.927
Unripe Strawberry	V_{2-3}	F	0.663	0.582	0.679
Unripe Strawberry	V_{2-3}	AP	0.658	0.552	0.668
Unripe Strawberry	V_{2-3}	AR	0.819	0.745	0.825

Table 7. Performance of the Early Fusion Network on a Nvidia GTX 1080 Ti 11GB (single forward pass).

Resolution	Model Inference Time	Frames Per Second
1920×1080	0,073 s	13.71
1280×736	0.038 s	26.33



(a) RGB network detection showing failure cases.

(b) Early Fusion network detection showing improved results.

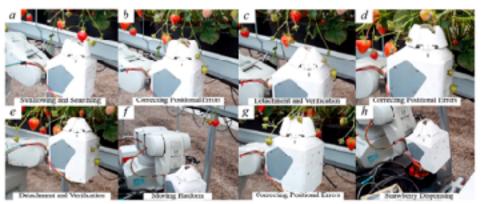
SOTA in DL for Fruit Detection

Method	# Images	Availability	Viewpoint	Multi Spectra	Controlled	Natural
Yu et al. [34]	1900 🗡 Si		Side on (Close)	×	1	×
Chen et al. [35]	12526	×	Aerial	×	×	1
Lamb and Chuah [36]	4550	×	Ground	×	×	1
Ge et al. [37]	-	×	Side on	×	×	1
Sa et al. [8]	122	1	Side on	1	1	×
L*a*b*Fruits (Ours)	150	1	Multiple	1	×	1
Method	Network		AP (IoU 0.5)	F ₁ (IoU 0.5)	Inference Speed (s)	
Yu et al. [34]	Mask R-0	CNN - ResNet-S	50 -	-	0.13 @ 640 :	× 480 px
Chen et al. [35]	Faster R-	CNN - ResNet	50 0.77	-	0.11 @ 480 :	× 380 px
Lamb and Chuah [36]	Single Sh	ot Detector (SSI	D) 0.84	-	0.61 @ 360 :	× 640 px
Ge et al. [37]	Mask R-C	NN - ResNet-1	01 0.81	0.90	0.62 @ 640 :	× 480 px
Sa et al. [8]	Faster R	CNN - VGG-16	÷ -	0.79	0.39 @ 1296	× 964 px
L*a*b*Fruits (Ours)	Retinal	Net, ResNet-18	0.75	0.75	0.07 @ 1920 :	× 1080 px

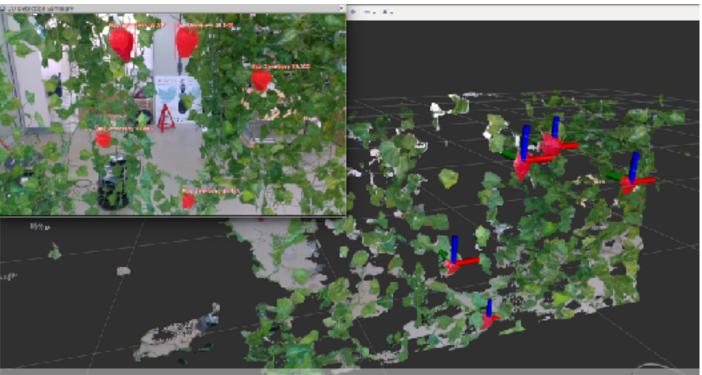
Yield Prediction (Fruit Counting)

Ripe Strawberry Count: 9 (7)

Carriera



Picking

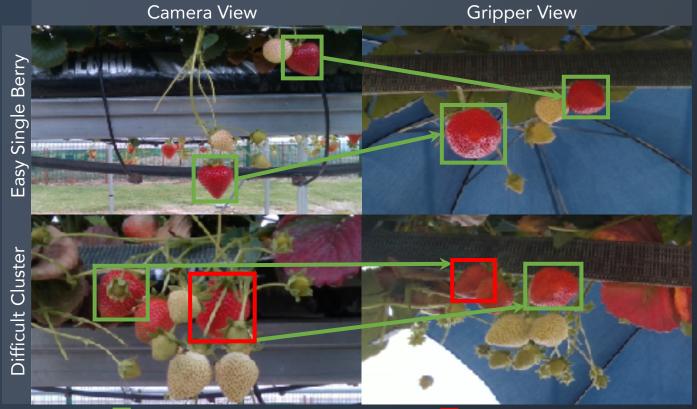


Xiong, Y.; From, P. J.; Isler, V. Design and Evaluation of a Novel Cable-Driven Gripper with Perception Capabilities for Strawberry Picking Robots. 2018 IEEE ICRA

Fruit Localisation (3D projection)

3D Projection of Strawberry Detections Showing Accurate Localisation

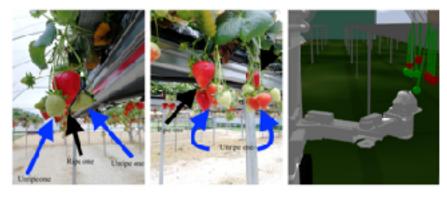
Harvesting Localisation Failures

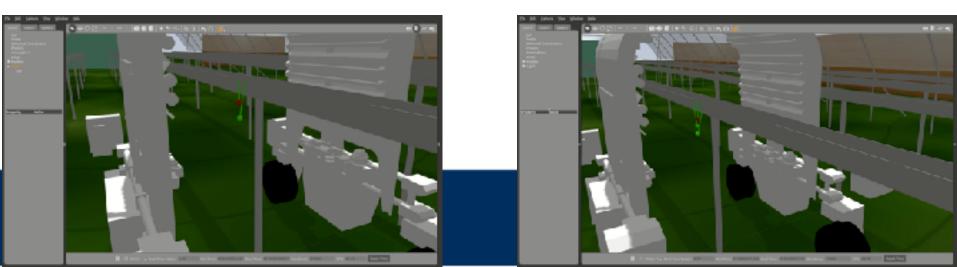

Pros:

Current detection system can now successfully pick single berries with good separation.

Fast 3D detections. Cons:

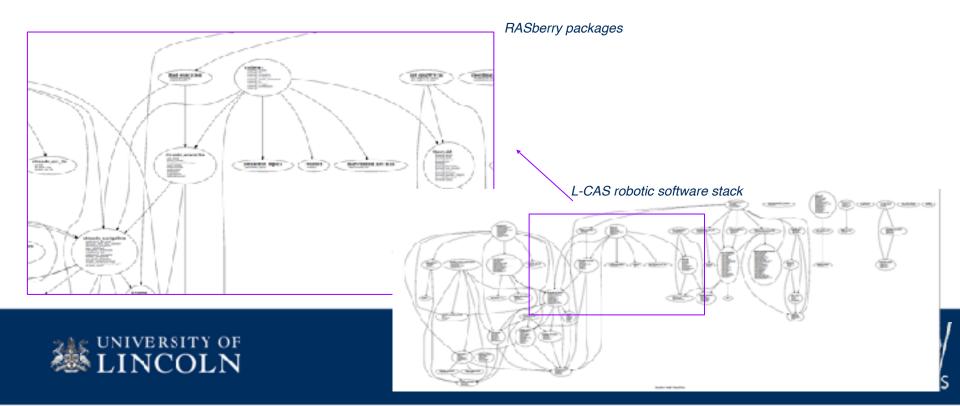
Cannot pick berries in clusters due to unforeseen obstructions.


No understanding of the harvesting apparatus perspective.


Harvest Success

Harvest Failure

Picking (Path Planning for Clusters)



- Probabilistic Motion Primitives to deal with Clusters
- submitted to IROS 2020

System Integration

ROS-based Software Infrastructure

Summary and Future Work

- RASberry fleet of autonomous robots for soft fruit industry
- Various applications: in-field logistics, plant care, yield prediction, fruit picking
- An *integrated* challenge:
 - logistics needed after picking
 - perception for picking and yield prediction, etc.
 - safely deal with humans in the field

