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Next-Best-Sense: a multi-criteria robotic exploration
strategy for RFID tags discovery
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Abstract—Automated exploration is one of the most relevant
applications for autonomous robots. In this paper, we propose a
novel online coverage algorithm called Next-Best-Sense (NBS), an
extension of the Next-Best-View class of exploration algorithms
which optimizes the exploration task balancing multiple criteria.
NBS is applied to the problem of localizing all Radio Frequency
Identification (RFID) tags with a mobile robot. We cast this
problem as a coverage planning problem by defining a basic
sensing operation – a scan with the RFID reader – as the
field of “view” of the sensor. NBS evaluates candidate locations
with a global utility function which combines utility values for
travel distance, information gain, sensing time, battery status and
RFID information gain, generalizing the use of Multi-Criteria
Decision Making. We developed an RFID reader and tag model
in the Gazebo simulator for validation. Experiments performed
both in simulation and with a robot suggest that our NBS
approach can successfully localize all the RFID tags while
minimizing navigation metrics, such sensing operations, total
traveling distance and battery consumption. The code developed
is publicly available on the authors’ repository 1.

Keywords—Reactive and Sensor-based Planning, Surveillance
Systems, Service Robots, RFID, Next-Best-View

I. INTRODUCTION

MOBILE robot patrolling is attracting growing attention,
since it allows to perform tasks (e.g., exploration,

surveillance, search and rescue) efficiently and continuously
in potentially hazardous conditions. Our Next-Best-Sense
(NBS) approach adapts an online Next-Best-View (NBV)
method that uses Multi-Criteria Decision Making (MCDM)
[1] to choose the next location a robot should reach. This
exploration strategy is applied in this work to Radio Frequency
IDentification (RFID) tag discovery. In an RFID system there
is at least one reader and typically multiple tags. The tags are
simple radio devices, capable of transmitting a short signal
after a reader request. They do not require a battery, as they
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Fig. 1: The Linda robot (a). The Next-Best-Sense algorithm (b).

can be powered by the reader’s radio signal itself and they
are extremely cheap. Existing work was focused on finding
tags in a given environment based on a-priory knowledge
about their position [2], [3]. Our contribution does not
require any knowledge about the inventory distribution, casting
the inventory management problem into an environment
coverage problem with RFID reader measurements. Using
Next-Best-Sense to schedule the exploration, we can minimize
the time required to cover an environment while finding all
RFID tags in a target area. At each step, after performing a
local sensing operation, new candidate locations are identified
along the boundary between the scanned and the unscanned
space. While navigating a robot, either in a tele-operated
or autonomous way, the user always try to achieve multiple
objectives at the same time. Few examples are given by
traversing the shortest path while maximizing the area covered
by the sensors. At the same time, it would also be important
to reduce the impact over the battery in order to guarantee
longer deployment time for the robot. These objectives are
usually considered inside a utility function used to select the
next destination of the robot. Differently from approaches
using ad-hoc aggregation function [4], [5], MCDM offers a
more principled theoretical foundation to the decision making
process. Next-Best-Sense is an online greedy algorithm, it
always selects the best candidate location according to the
given criteria without considering long-term planning. In this
way, it favorably scales to large environments and can also
be used in unknown environments. The entire NBS loop
is given by Fig. 1(b). The experiments performed both in
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simulation and real world (using the Linda robot shown in
Figure 1(a)) proved that NBS achieves a fast map coverage
and high tag localization precision (<1m). Similarly to [1],
our NBS represents a theoretical contribution for many search
applications. For example, it offers a valid option for planning
a safe path for a robot deployed in a nuclear facility with the
goal to identify all the possible radiation sources [6].

The remainder of the article is organized as follows: in
Sec. II we survey the related literature while in Sec. III we
define the problem statement. In Sec. IV and in Sec. V we
introduce the sensor model and our algorithm, respectively. In
Sec. VI we report the results of experiments, performed both
in simulation and with a physical platform. Finally, in Sec. VII
we summarize our approach, highlighting the main concepts,
its advantages and limitations, and future works.

II. RELATED WORK

Our work focuses on a novel exploration strategy where
multiple criteria can be optimized at the same time.
This strategy is particularly relevant to RFID-tagged object
detection, as it usually involves covering large areas and
requires an efficient planning. This section briefly surveys
related works in both areas.

A. Exploration Strategies
The majority of exploration strategies for initially unknown

environments take decisions in a greed fashion and are often
called Next-Best-View (NBV) algorithms. Usually, in NBV
systems, the candidate next locations for the robot are chosen
to be on the frontier between the already explored free space
and the unknown area, and they need to be reachable from the
current position of the robot. The identified candidate positions
are then evaluated according to an utility function. In [7],
they use the traveling cost, according to which the next best
observation location is the nearest one. In a similar way, in [4],
[5] the traveling cost is combined (linearly and exponentially,
respectively) with the information gain, defined as the expected
amount of new information the robot can acquire from the
candidate location. In [8], traveling cost and information
gain are instead combined with semantic information. In [9],
the authors introduce a technique based on relative entropy,
while [10] uses several criteria and a multiplicative function
to obtain a global utility value. More recently, in order
to overcome the limitation of local planning, frontier-based
exploration has also been combined with Receding Horizon
NBV (based on sampling methods) to prevent the robot
gets stuck [11]. The aforementioned strategies define ad hoc
aggregation methods that combine the values assumed by
the criteria considered. To solve this issue, [1] proposed the
adoption of Multi-Criteria Decision Making, which is more
theoretically funded and of inspiration for our work. More
recently, some data-driven solutions have also been proposed
following the growing interest generated by deep learning in
the robotic community. In [12], the robot is equipped with a
long-term memory which allows to learn the global map using
only raw sensory input and to plan immediate reactive actions
during the exploration task. Spatial memory is used also in

[13], where the authors adopt imitation learning and coverage
rewards for bootstrapping learning the exploration policy. [14]
proposes to learn an actor-critic model that selects the best
frontier among those available. Similarly to the NBV methods
described before, also these approaches take a decision solely
based on the current partial observation on the environment.
However, their use is still limited due to the large amount of
samples required for training the model.

B. RFID Technology

RFID is essentially a form of radio-frequency (RF)
communication. As a result, any RF localization technique can
be also applied to RFID: Time Of Arrival, Time Difference
Of Arrival, Trilateration, Received Signal Phase or radar [15].
These techniques are based on RF propagation models,
including the physical aspects of RFID communication. They
determine a set of RF propagation parameters and use them
to locate the tags based on received power, phase or delay.
Other techniques rely on a purely statistical approach modeling
the tag detection event. They are data-driven approaches,
use Machine Learning techniques to not take into account
any radio signal propagation model. Unfortunately, both RF
and statistical techniques usually require non conventional
readers or tags [16] and multiple readers [17], or at least
multiple antennas to provide spatial diversity. A compromise
solution that can rely on commercial RFID readers is followed
by recent Bayesian approaches. They include some physical
properties of RFID radio propagation into an essentially
statistical model [18]. Those approaches have proven to be
useful for robot exploration. For example, [19] uses a Bayesian
model to tracks tags and move robot towards the most likely
location, but still requires detecting the tag to plan its next
movement in a reactive way. Zhang et al. [2] propose small
changes to Dynamic Window Approach (DWA) to move closer
to obstacles where tags are supposed to be, following a fixed
global plan covering the environment. A-priori knowledge
about the tags locations is also considered by Li et al. [3]
in their library inventory management system. Another usual
approach is to use or even deploy tags as landmarks to help
robot localization. For example, MF. tags have a very reduced
detection range (∼30cm.). This make them suitable to improve
exploration in simultaneous localization and mapping (SLAM)
systems [20]. Our work does not assume any knowledge about
the tags location, uses a way larger detection range and focuses
on the opposite problem of efficiently surveying all the tags
in a known map. It aims to overcome the limitations on the
applied exploration strategies on RFID inventory systems.

The contribution of this paper is to use MCDM, originally
introduced in robotics for human search and rescue, for
RFID tags detection with an online greedy approach that
considers novel criteria. Differently from [1], where a team
of robots looks for victims, we do not use the probability of
communication between the members of the team. Instead,
we use the sensing time, defined as the time required for
performing an inventory operation. We also consider the RFID
information gain, namely the amount of uncertainty regarding
the presence of a tag around a given location. As last,
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the current battery charge is another fundamental criterion
when deploying a robot with long-term autonomy in mind.
Moreover, we also differ from existing exploration methods
for RFID tags such as [2], [3], [19] because we do not have
any a priory assumption on the tag location but only the map
of the environment to explore.

III. PROBLEM FORMULATION

In this work, we address the problem of tag detection by
a single mobile robot in a known environment, represented
by a binary occupancy grid, where cells are labeled either as
free or as obstacle. Hence, the robot pose c is defined by
the free grid cell g where it is located and its orientation
θ. We assume that the robot is always in the center of a
cell and the orientation belongs to a finite set Θ of possible
orientations, with values equally spaced in [0,2π). We use
a Moore neighborhood connectivity to model the robot’s
traversability over free cells, i.e., a robot can move from pose
c to any of the 8 free poses c′ around it. The robot can perform
a sensing operation to analyze the presence of RFID tags in
its surrounding. This operation consists in the emission of
an interrogation signal, that will be replied by the tags with
their identification number (ID), if they receive enough power
to back scatter their reply. This is mostly an instantaneous
operation but if the environment is dense enough and given the
limited power on the reader, this may be a noticeable time. The
detection field is highly limited by the specific antenna and tag
radiation patterns, as well as by the environment. Based on the
probabilistic sensor model we describe in Sec. IV, the detection
field can be defined using the incoming received power.

A free grid cell g′ is considered sensable from a robot pose
p = (g, θ) if the line segment spanning from the center of
g to the center of g′ does not intersect any obstacle cell and
if the center of g′ is inside the detection field. We assume
that obstacles fully occupy grid cells, obstructing the line of
sight of a sensing operation. The problem of planning a path
for tag discovery is given by finding the optimal sequence of
sensing operations 〈((g1, θ1)), ((g2, θ2)), . . . , ((gn, θn))〉 to be
performed in order to sense all the free cells of the environment
(namely, each cell should be sensed from at least one pose
((gi, θi))). Pose (g1,θ1) is the starting pose of the robot in the
environment and is not required to be equal to pose (gn,θn),
i.e., we are looking for a path and not for a tour. Performance
metrics for optimality include the final level of map coverage,
the number n of sensing operations, the total distance traversed
by the robot, the final battery level and the detection accuracy
and precision.

IV. SENSOR MODEL

A RFID reader emits radio frequency waves with a
configurable power, using random frequencies. If a tag
receives enough power to activate its chip, it sends back its
identification number (ID). If that back-scattered radio wave
gets to the reader, the reader will report the ID, the received
power and the incoming wave phase. Usually there are multiple
waves that make it to the antenna (other tags, diffractions)
and the propagation conditions change, so there are significant

(a) XY plane

Elevation plane (θ) Freq. 902 MHz.

(b) XZ plane

Fig. 2: RFID antenna Gain for the antenna used in this study. Antenna
gain has a single maximum along axis X.

variations in the received power and phase. Our probabilistic
sensor model that accounts for these phenomena based on
known UHF propagation models.

A. Friis equation
The Friis equation describes received power in terms of

transmitted power, antenna-separation distance, frequency and
antenna gains in free-space communication [21]. It is only
valid in free space and in far field (d >> λ), but is often
used as reference.

Pr = Pt +Gt(θ, ϕ) +Gr(θ, ϕ) + 10 log(
λ2

(d4π)2
) (1)

The Friis equation contains the following terms: Pt

Transmitted power (decibels), Pr Received power (decibels),
Gt Transmitter Antenna gain (decibels), Gr Receiver antenna
gain (decibels), λ Carrier wavelength (meters), d distance
between tag and antenna (meters). Antenna gains (reader,
tag) are usually defined empirically by manufacturer data
and depend on the azimuth angle ϕ and elevation angle
θ of the receiver w.r.t the transmitting antenna. The RFID
reader antenna used in this work has a cardioid radiation
pattern, shown in Fig. 2, whereas most RFID tags are dipole
antennas [22]. In our experiments, we used a Smartrac FROG
3D tag that has a quasi isotropic propagation model [23].

In the studied scenario, there is a two way communication
with just the initially transmitted power. After the RFID reader
transmits, the tag receives the signal first and then it transmits
back using the received power to the reader. Because of that,
the Friis equation must be applied twice to find the final
received power:
P ′r = Pt + 2Gt(θ, ϕ) + 2Gr(θ, ϕ) + 20 log(

λ2

(d4π)2
). (2)

This equation can be used to build a map (see Fig. 3(a))
of the expected power received by an antenna at the origin
of coordinates from a tag placed elsewhere. Next subsection
will describe additional noise factors included to model
perturbations due to multiple path propagation and shadows.

B. Log-distance path loss model
This empirical model accounts for energy losses inside

buildings or dense areas. It was first proposed by Seidel [24],
based on field measurements. According to data, they modeled
power noise in UHF band frequency as a log-normal
distribution:

Authorized licensed use limited to: University of Lincoln -UK. Downloaded on June 12,2020 at 07:52:56 UTC from IEEE Xplore.  Restrictions apply. 



2377-3766 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2020.3001539, IEEE Robotics
and Automation Letters

4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2020

(a) (b)

Fig. 3: (a) Received power (Pt = 0dB, Freq = 902MHz) using
Friis equation. (b) Received power probability distribution (Pt =
0dB, Pr = −95dB, Freq = 902MHz).

L(d) = −Gt(θ, ϕ)−Gr(θ, ϕ)− 10γ log(
λ

d4π
) +Xg, (3)

where L(d) = Pt(d) − Pr(d) Path losses (decibels), γ
path loss exponent, an empirical factor, Xg Gaussian noise
with zero mean, reflecting the attenuation (in decibel) caused
by fading. The γ factor accounts for the obstacles inside
the building. The noise factor, described by σ, describes
the multi-propagation effect itself. For example, according to
Seidel [24], in an office environment with soft partitions, a
common noise factor has a σ = 3.92 and γ = 2.2.

C. Implemented Probabilistic Power Model
Our model is based upon the Friis equation and the noise

model from the log-distance path loss model. First, the Friis
equation provides the expected received power from a tag
located at any position around the robot (Pr). According to the
log-distance model described above, the measurement noise
of the received power P ′r is represented by Xg ∼ N (0, σ2).
Hence, the likelihood of receiving power P ′r given the distance
d, azimuth ϕ and elevation θ can therefore be written as:

p(P ′r|d, ϕ, θ) = N (P ′r − Pr(d, ϕ, θ), σ2), (4)

where Pr has been defined in Equation 2. In the further
discussion, we will disregard the elevation angle θ as we
only concentrate on 2D maps. The likelihood function given
a specific measurement of Pr, a signal frequency and noise
variance σ2 = 16 is given in Fig. 3(b).

V. THE NEXT-BEST-SENSE APPROACH

The Next-Best-Sense algorithm adopts the iterative approach
already presented in Figure 1(b) to explore the environment.
The robot executes sensing actions and updates its map with
information from the most recent observation (detected tag
identifiers in current scan). This information is then used to
choose the next sensing cell and the robot finally executes the
navigation task.

A. Information Integration
One of the main advantages of NBS is that it focuses on

a reduced set of frontiers. Frontiers are cells on the boundary
between the scanned and the unexplored environment. For each

of them, we consider multiple candidate robot poses, one for
each orientation θ ∈ Θ. In order to choose the best pose
among the candidates, we define five criteria relevant for the
problem at study. (i) Information gain (IG), computed as the
number of free unscanned cells that the robot will be able
to sense from the candidate pose. (ii) Travel distance (TD),
the distance between the current robot pose and the candidate
pose. (iii) Sensing time (ST), the time required to sense all the
free unscanned cells senseble from the candidate pose. (iv)
RFID Information gain (RFID), corresponding to the amount
of uncertainty with reference to a RFID tag position in the
proximity of the considered pose. (v) Battery Status (BS),
the expected amount of battery charge left after reaching the
candidate pose. Information gain values are computed using
ray casting: we take each free cell inside the sensor detection
field. The RFID Information gain is calculated as the total
entropy H of the surrounding polygon S of the candidate
pose, where the entropy is a function of the cell probability of
containing a tag. Since the tag presence in a cell i is a Bernoulli
variable with probability pi, the entropy can be computed as

H =
∑
i∈S
−pi log2 pi − (1− pi) log2(1− pi). (5)

B. Candidate Pose selection

In order to select the best candidate pose, we use an utility
function that combines all the aforementioned criteria in a
balanced way. This function is defined using the MCDM
method, which has been proven useful in robot exploration [1].
MCDM deals with problems in which a decision maker has
to choose among a set of alternatives and its preferences
depend on different, and sometimes conflicting, criteria. Each
criterion ki is characterized by an utility function ui which
returns values between 0 and 1. MCDM offers a principled
way to combine criteria and to account for their dependencies.
Depending on the features estimated, two criteria can be related
by a relationship of redundancy or synergy. Therefore, their
joint contribution to the utility function can be less or greater,
respectively, of the sum of the marginal ones. Differently from
ad hoc exploration strategies [4], [5], MCDM exploits an
aggregation method called Choquet Fuzzy Integral to model
relations of redundancy and synergy. For our purposes (see [1]
for a complete description), we first introduce a function
η : P (N) → [0, 1], where N is the set of criteria considered
(|N | = 5 in our case) and P (N) is the power set of N , with the
following properties: η({∅}) = 0, η(N) = 1, if A ⊆ B ⊆ N ,
then η(A) ≤ η(B). The function η is used to specify weights
for each subset of criteria, which have to be chosen by the
user. The weights specified by η capture the above relations
among criteria: if two criteria k1, k2 are redundant, then we
specify that η({k1, k2}) < η({k1}) + η({k2}), while if
they are synergic η({k1, k2}) > η({k1}) + η({k2}); in case
η({k1, k2}) = η({k1}) + η({k2}) we say that the criteria
are independent. For a given pose c, we first sort the criteria
according to their utility such that

u(1)(c) ≤ ... ≤ u(|N |)(c) ≤ 1, (6)
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where we also assume that u(0)(c) = 0. Furthermore, we define
the set Aj as

A(j) = {i ∈ N |u(j)(c) ≤ u(i)(c) ≤ u(|N |)(c)}, (7)

i.e., the set of all criteria with utility larger than the utility
from kj . The global utility function f(uc) of a candidate pose
c is computed by a discrete Choquet integral which uses the
ranking of the utilities as well as the sets Aj , i.e.,

f(c) =

|N |∑
j=1

(u(j)(c)− u(j−1)(c))η(A(j)). (8)

We define the weights of the five criteria as follows: x1
is the weight of information gain criterion, x2 is that of the
travel distance, x3 is that of the sensing time, x4 is the weight
of the RFID information gain criterion and finally x5 is the
weight for the battery status criterion. Individual weights must
be greater or equal than zero and their sum must add up to
one. Finding the best weights for sets of criteria is a difficult
but fundamental task. Given that we have only five criteria,
we adopted a simple ad-hoc selection of weights, keeping
in mind that η(N) = 1, identifying a subset of interesting
configurations to test. Firstly, the one associated with the
vertices of the parameters spaces, in which one criterion is
associated with maximum weight (xi = 1.0) and the others
with null. Then, we sampled a configuration in which all the
criteria have the same importance (xi = 1/n, with n = 5). In
the end, we selected five configurations in which one criterion
at each time has a big associated weight xi and the others
have identical importance (xj = (1 − xi)/(n − 1)∀j 6= i).
The intuition behind the choice of the weights is that, for
example, maximizing information gain, travel distance, and
sensing time criteria is expected to correspond to a robot
behavior that quickly covers most of the environment, that
travels short distances, and that achieve full coverage with
less sensing operations, respectively. These configurations are
then evaluated experimentally on different maps and the best
is identified as the one optimizing an objective function, in
our case minimizing the number of sensing operation and the
traveled distance, with less impact on the battery, while having
high precision in finding the tags.

C. RFID belief map

In addition to the map used for navigation, our NBS
approach iteratively updates a belief map each time a sensing
operation is performed. We describe now how to update the
cells for the RFID grid.

At the beginning of the task, we assume each grid cell
maintains a probability pij , which represents the belief that
pij = p(Oij = 1) contains a a tag. The prior for pij is
initialized uniformly, for example if we have N grid-cells, then
pij = 1/N . We also have a likelihood function for each power
measurement P ′h defined by Equation 4. Note that, for each
measurement h, we can compute distance d and azimuth ϕ of
the robot to each grid-cell ij. We will therefore write:

p(P ′h|ij, ch) = p(P ′h|d(ij, ch), ϕ(ij, ch)) (9)

as likelihood of our measurements, where ch is the
configuration of the robot (position and orientation) at the hth
measurement. Given the likelihood, the new posterior belief
can be obtained by a Bayesian update, i.e.,

p(Oij = 1|P ′h, ch) =
p(P ′h|ij, ch)pij∑
ij p(P

′
h|ij, ch)pij

. (10)

This Bayesian update needs to be applied after every
measurement P ′h, where the old posterior is again used as
prior pij = p(Oij = 1) for the next update. A graphical
representation of the Bayesian update over a map is given in
Fig. 4 where the red arrow represents the robot pose and the
green circle is the ground truth position of the marker.

VI. EXPERIMENTS

We tested the proposed NBS approach both in simulation
and in the real world, using different maps and weight
configurations.

A. Parameters and Evaluation Metrics
The RFID tags discovery problem is affected by multiple

parameters. (i) RFID probabilistic sensor model. It depends
on the antenna, tags, transmitted power used and noise factor
considered in the experiment. We always use a noise factor
σ = 3.92, as expected for an office setup. (ii) The number
of possible orientations Θ the robot can be in at a given
position. (iii) The configurations of the five criteria described in
Sect. V-A, namely Information Gain, Travel Distance, Sensing
Time, RFID Information Gain and Battery Status.

The metrics considered in our experiments are given as: (i)
Coverage: the final percentage of sensed cells over the total
of free ones. (ii) #Config: the number of sensing operations,
namely how many times the robot stops sensing for a tag.
(iii) Distance: the total traversed distance covered by the robot
from the beginning of the exploration task. (iv) Battery: the
battery level at the end of the exploration. Differently from
the distance, it is also affected by the number of rotations
performed by the robot. (v) Accuracy: the percentage of tag
correctly detected. (vi) Precision: the tag localization precision,
expressed as euclidean distance from the ground truth.

B. Simulation Experiments
Multiple tests are run in simulation to evaluate our approach

and to identify the best combinations of criteria weights for
addressing the RFID detection problem. We selected five
different environments: a corridor of the Orebro Universitet’s
Teknikhuset in Sweden (OREBRO), a warehouse of the
National Centre for Food Manufacturing in UK (NCFM),
and three environments at the Isaac Newton Building at
Lincoln University in UK – an office (INB 3123), a corridor
at the School of Engineering (INB ENG) and the Atrium
(INB Atrium) –. All of the maps have been created using
the robot, cleaned from noise and discretized as binary
images (Fig. 5). For each map, we tested 11 weights criteria
combinations sampled from the parameter space in the way
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Fig. 4: Bayesian update for the RFID belief map. The red arrow is the robot pose, the green circle is the ground truth position of one RFID
tag. White cells are associated with a high probability of containing the tag. At the beginning (left), all the cells have uniform probability.
During the exploration, the probability is updated using eq. 10. After emitting a signal, if the robot does not receive a reply, the surrounding
cells within the detection field and in the line-of-sight are updated with a lower value, while the probability the tag is located elsewhere in
the map is increased. Differently, if a reply is received, the probability is increased in the surrounding of the robot and decreased elsewhere.
Please note how the probability move towards the correct map position at different exploration stages (left to right).

described before. For space limitation, in Table I we report
only the weights associated to the individual criteria. Given
the nature of the criteria selected, we model a synergic
relationship among all of them, i.e., for a set of two criteria,
we set η({ki, kj}) = η({ki}) + η({kj}) + b, with b =
0.1. We compared NBS with a RandomWalk solution and
the one we call RandomFrontier, which are now described.
In RandomFrontier, after scanning a local portion of the
map, a random destination is chosen among the frontiers.
RandomWalk, instead, at each iteration randomly samples the
next destination from the list of all the free cells in the map.
Differently from the other solutions, RandomWalk can select
as next destination a pose that has already been adopted by
the robot, in an area of the map already scanned. For this
reason, RandomWalk represents a very basic baseline. In all
of the tests, we placed 10 tags in random positions uniformly
sampled from the free space. For each configuration, every
single map has been solved three times using a different robot
starting position and tags location.

The results of the simulations are reported in Table I
and in Fig. 6. Here at the top, the coverage rate of the
three approaches is plotted for each one of the environments.
RandomWalk never accomplishes full map coverage due to
battery discharge. NBS proves instead to be faster than
RandomFrontier because of a better policy in choosing the next
destination for the robot. Figure 6-(bottom), instead, shows
the traveled distance covered by the robot while following
the different policies. Based on this metric, it is possible to
notice how NBS performs better than both RandomFrontier
and RandomWalk.

From these simulations we can draw some conclusions
regarding which weights configuration to use. Looking at

Fig. 5: The maps used: from left, OREBRO (242 m2, 0.5 m/px),
NCFM(386 m2, 0.25 m/px), INB 3123(262 m2, 0.5 m/px),
INB ENG (364 m2, 0.25 m/px), INB Atrium (355 m2, 0.33 m/px).

the Table I, it is possible to notice how simply focusing on
maximizing one criterion does not lead to the best overall
performance, namely obtaining the best value across all the
metrics considered. For example, assigning all the importance
to InformationGain (IG), we minimize the number of times
the robot stops for a sensing operation but the traversed
distance is on average > 2x the best result. Interestingly,
maximizing the TravelDistance (TD) weight do not lead
to a minimum traversed path, but this make sense as we
use a greedy optimization. The most satisfying results are
obtained when all criteria are associated with a positive weight.
More importantly, almost all the NBS configurations always
guarantee better (> 2x) performances than RandomFrontier if
just looking at the overall traversed distance. RandomWalk,
instead, always performs much worst than the other two
approaches in all the environments, running out of battery even
before covering the 60(%) of the entire map. To conclude, this
study showed that adopting MCDM to balance the importance
of multiple optimization objectives always leads to a better
performance either than a random heuristic or than maximizing
a single criterion. In particular, the configuration of the weights
favoring TravelDistance (TD) tends to be the best setting for
most of the metrics considered regardless of the structure of
the environment. Another interesting observation is that aiming
only at detecting the tags (RFID = 1) still allows to find all
tags with high precision regardless of partial map coverage.
Yet, this configuration would leave the robot with very little
battery left in most of the experiments due to the higher travel
distances.

C. Gazebo and Real World Experiments

In order to better quantify the efficiency of the proposed
approach for RFID tag detection, we tested NBS both
in Gazebo and in the real world using as test-bed the
environments INB 3123 and INB ENG. For our experiments,
we used the Linda robot already presented in Sec. I. Our idea
is to show the robustness of NBS to increasing complexity
environments and setting. In the previous section, we showed
that NBS is able to successfully solve a given two dimensional
grid and identify multiple RFID tags with an accuracy lower
than one meter. We now move forward, presenting results
obtained in Gazebo where we used the full robotic navigation
stack offered by ROS. At the same time, we compare the
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TABLE I: Simulation results on five grid worlds. The performance metrics are expressed as mean and standard deviation across three runs per
configuration. Best results are reported in bold.

NBS Configurations

Random frontier Random walk

C
ri

te
ri

a

BS 1 0 0 0 0 0.6 0.1 0.1 0.1 0.1 0.2
RFID 0 1 0 0 0 0.1 0.6 0.1 0.1 0.1 0.2

ST 0 0 1 0 0 0.1 0.1 0.6 0.1 0.1 0.2
TD 0 0 0 1 0 0.1 0.1 0.1 0.6 0.1 0.2
IG 0 0 0 0 1 0.1 0.1 0.1 0.1 0.6 0.2

IN
B

31
23

Coverage(%) 100 100 100 100 100 100 100 100 100 100 100 100 60(20)
Battery(%) 83.44(1.4) 50.18(2.65) 35.29(7.13) 81.92(0.58) 69.51(1.37) 87.55(0.88) 81.98(1.53) 82.03(0.51) 86.87(0.43) 80.87(1.72) 85.45(1.25) 62.88(2.9) 0

#Config 784.67(47.82) 477.33(16.86) 869.33(63.51) 785.67(57.01) 240.33(4.16) 312.67(10.97) 321.0(34.04) 406.0(21.66) 327.0(15.87) 272.0(19.08) 333.33(11.59) 367.33(14.38) 125.66(7.41)
Distance(m) 370.63(31.1) 825.45(25.07) 1009.47(102.57) 372.84(13.9) 501.53(20.96) 253.72(14.41) 334.73(29.46) 355.87(11.37) 257.37(2.0) 332.38(19.02) 281.15(22.88) 560.13(35.02) 2121.94(91.53)
Accuracy(%) 100 100 100 100 100 97(6) 100 100 100 100 100 100 83(6)
Precision(m) 0.61(0.19) 0.7(0.12) 0.66(0.14) 0.68(0.11) 0.66(0.1) 1.01(0.55) 0.68(0.12) 0.73(0.13) 0.77(0.18) 0.68(0.14) 0.76(0.15) 0.68(0.07) 1.51(1.17)

IN
B

E
N

G

Coverage(%) 100 98(1) 89(11) 100 100 100 100 100 100 100 100 100 51(3)
Battery(%) 79.54(1.67) 8.57(15.12) 0 76.61(4.23) 57.0(4.34) 79.65(2.5) 58.17(3.99) 69.17(1.99) 82.54(2.1) 69.4(3.74) 72.7(2.93) 45.45(2.84) 0

#Config 673.33(71.4) 574.33(88.52) 1079.0(15.13) 713.67(126.62) 220.67(13.58) 399.67(18.5) 307.33(28.04) 499.67(14.57) 323.0(14.11) 282.33(27.32) 410.0(9.0) 381.0(13.95) 89.0(6.68)
Distance(m) 230.76(23.73) 823.31(129.89) 781.79(7.37) 241.91(39.75) 389.59(46.5) 212.31(29.87) 367.03(34.87) 274.98(15.9) 166.97(17.98) 273.69(35.87) 270.83(35.68) 498.65(13.92) 1066.90(61.75)
Accuracy(%) 97(6) 100 87(12) 100 93(6) 100 100 100 90(0) 83(6) 100 100 60(10)
Precision(m) 0.44(0.35) 0.35(0.08) 0.83(0.62) 0.38(0.07) 0.61(0.5) 0.33(0.06) 0.36(0.09) 0.3(0.12) 0.73(0.69) 1.0(0.76) 0.38(0.06) 0.49(0.36) 1.72(0.86)

IN
B

A
T

R
IU

M Coverage(%) 100 98(0) 97(2) 100 100 100 100 100 100 100 100 100 32(2)
Battery(%) 65.28(5.23) 0 4.55(7.95) 62.68(3.13) 36.14(3.37) 73.36(3.91) 51.34(4.33) 48.3(1.03) 73.47(3.69) 59.7(3.36) 68.56(5.4) 7.23(2.06) 0

#Config 1277.0(169.78) 635.33(22.85) 1049.33(45.79) 1298.33(127.63) 378.67(13.65) 606.33(6.51) 578.0(62.51) 886.0(13.0) 527.33(31.53) 488.33(4.93) 612.33(8.39) 654.33(15.43) 88.66(4.49)
Distance(m) 521.76(73.15) 1195.09(8.99) 1029.88(74.16) 516.18(42.21) 743.42(44.9) 370.73(50.76) 596.06(45.37) 644.06(18.46) 347.54(51.82) 503.23(55.09) 413.69(61.87) 1042.29(42.54) 1433.06(70.15)
Accuracy(%) 97(6) 97(6) 87(6) 97(6) 87(6) 97(6) 93(12) 97(6) 90(0) 83(6) 97(6) 100 67(6)
Precision(m) 0.68(0.43) 0.62(0.5) 1.05(0.76) 0.64(0.41) 1.12(1.07) 0.64(0.46) 0.76(0.65) 0.64(0.45) 0.93(0.7) 1.24(1.03) 0.62(0.48) 0.79(0.57) 2.08(1.37)

N
C

FM

Coverage(%) 100 95(3) 75(22) 100 100 100 100 100 100 100 100 100 41(0)
Battery(%) 70.02(3.46) 0 0 71.13(5.19) 43.73(4.31) 74.2(4.57) 50.38(7.92) 49.45(9.54) 81.93(1.54) 62.98(3.35) 66.6(5.06) 14.28(5.5) 0

#Config 992.33(78.78) 572.67(40.77) 761.0(56.51) 921.0(143.5) 317.33(18.58) 560.67(48.64) 500.67(65.76) 759.0(75.66) 420.0(47.09) 439.67(67.0) 606.67(43.66) 481.33(14.38) 70.66(3.78)
Distance(m) 351.36(36.18) 936.42(4.16) 879.27(6.22) 309.2(50.3) 520.05(33.57) 273.77(40.44) 471.1(70.6) 467.77(79.76) 197.16(14.27) 349.88(19.33) 349.53(48.38) 782.35(16.29) 1126.18(54.04)
Accuracy(%) 93(6) 93(6) 73(15) 100 83(6) 90(10) 87(6) 90(17) 87(6) 93(6) 93(12) 93(12) 40(17)
Precision(m) 0.61(0.46) 0.58(0.47) 1.26(0.69) 0.39(0.08) 0.97(0.65) 0.68(0.75) 0.84(0.59) 0.69(0.59) 0.9(0.56) 0.63(0.51) 0.66(0.51) 0.74(0.51) 2.43(1.02)

O
R

E
B

R
O

Coverage(%) 100 100 100 100 100 100 100 100 100 100 100 100 54(3)
Battery(%) 84.04(0.7) 47.14(12.06) 35.47(3.38) 83.04(1.33) 76.24(1.04) 88.05(0.53) 82.07(0.62) 80.99(2.66) 88.52(1.05) 82.99(1.68) 85.52(2.4) 65.15(1.82) 0

#Config 740.67(33.38) 491.0(85.85) 843.67(63.96) 684.33(44.28) 200.0(12.0) 316.0(2.65) 290.67(12.34) 405.67(44.09) 293.33(14.01) 223.33(9.29) 297.33(3.06) 328.86(4.49) 109.66(2.05)
Distance(m) 366.42(12.28) 908.17(188.39) 1005.74(58.62) 352.39(21.18) 399.9(20.89) 251.16(8.19) 360.02(11.06) 362.76(47.48) 232.84(17.18) 316.88(29.82) 279.44(30.86) 531.83(3.26) 2170.44(36.85)
Accuracy(%) 100 100 100 100 100 100 100 100 100 93(6) 100 100 90(10)
Precision(m) 0.65(0.14) 0.63(0.09) 0.7(0.05) 0.65(0.2) 0.72(0.18) 0.75(0.15) 0.69(0.18) 0.7(0.09) 0.78(0.11) 1.22(0.89) 0.71(0.1) 0.71(0.0) 1.49(1.06)
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Fig. 6: Simulations results while solving five grid-world scenarios. The first row shows the map coverage rate of the three strategies, while in
second row, the total traveled distance (for NBS, we used IG=0.1, TD=0.6, ST=0.1, RFID=0.1, BS=0.1).

results obtained within the simulator with those obtained with
a prototype robot implementation, where miss-localization and
path occlusions can lead to a drop in performance. The
results are reported in Fig. 7. RandomWalk proves again
to be the slowest exploration strategy to converge to full
map coverage (under the assumption of unlimited battery
charge). Surprisingly, it is the fastest policy to find all the
four RFID tags located in INB ENG. This can be explained
because RandomWalk does not plan locally as for the other
two strategies. It uniformly samples a random destination
from the list of all free cells in the map. However, it’s not
possible to draw any significant conclusion on the behavior
showed by the robot given the randomness of the approach.
RandomFrontier, instead, performs almost twice as better than
RandomWalk regarding the map coverage, while it proves
to be the slowest approach to find all the tags. As already
proved in the previous section, NBS outperforms the other
exploration policies. Interestingly, our real implementation
performs really close to the one in simulation. This result has a

really significant importance because validates the probabilistic
model used in this study. Moreover, it proves the idea of a full
sim-to-real pipeline without a significant drop in performance.

VII. CONCLUSIONS

In this paper, we addressed the problem of planning
coverage paths for RFID tags discovery with a mobile robot
equipped with an RFID reader. The solution we presented
follows an online approach and uses MCDM to define a
Next-Best-Sense strategy that chooses the next sensing pose
by optimizing multiple criteria. Experimental evidence, both
in real world and simulation, shows the potential of NBS in
finding effective exploration strategies which lead to high tag
localization precision (less than a meter). The main limitation
of this work is linked with the resolution of the map which
affects the computational time and the tags detection precision.
Future work will address this trade-off, for example using a
topological map [8] for the navigation and a finer resolution
for the tag detection or by adapting the resolution in the areas
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Fig. 7: Map and RFID coverage results obtained in the Gazebo
simulator and with a prototype robot.

of interest. Another extension is to scale the exploration to
the spatiotemporal dimension [25], to find tags which change
position over time (inventory management applications) in
an environment with moving obstacles [26], [27]. Moreover,
we will work on improving the tag detection precision. For
example, allowing variable transmitted power can reduce the
number of required robot configurations, reducing overlapping
in exploration. Finally, the probabilistic sensor model of the
RFID tag detection could be extended to take into account
also the phase of the received signal. This, together with a
finer resolution map, would allow an even more precise tag
localization.
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