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Abstract— Models of human behaviour, such as pedestrian
flows, are beneficial for safe and efficient operation of mobile
robots. We present a new methodology for benchmarking of
pedestrian flow models based on the afforded safety of robot
navigation in human-populated environments. While previous
evaluations of pedestrian flow models focused on their predic-
tive capabilities, we assess their ability to support safe path
planning and scheduling. Using real-world datasets gathered
continuously over several weeks, we benchmark state-of-the-
art pedestrian flow models, including both time-averaged and
time-sensitive models. In the evaluation, we use the learned
models to plan robot trajectories and then observe the number
of times when the robot gets too close to humans, using a
predefined social distance threshold. The experiments show that
while traditional evaluation criteria based on model fidelity
differ only marginally, the introduced criteria vary significantly
depending on the model used, providing a natural interpretation
of the expected safety of the system. For the time-averaged flow
models, the number of encounters increases linearly with the
percentage operating time of the robot, as might be reasonably
expected. By contrast, for the time-sensitive models, the number
of encounters grows sublinearly with the percentage operating
time, by planning to avoid congested areas and times.

I. INTRODUCTION

In recent years, the maturity of robot localisation, map-
ping, obstacle avoidance, and motion planning methods
enabled the creation of intelligent systems capable of reliable
operation in structured environments. Some of these systems,
like self-driving cars or delivery drones, already appeared
on the market, while others were demonstrated in projects
like STRANDS [1] or SPENCER [2]. Despite the readiness
of the core methods above, there are few mobile robots
operating routinely in human-populated environments. One
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Fig. 1. Location where the experiments were performed. Photo and most
prominent pedestrian flows during the morning (left) and evening (right).

of the possible causes is that, while robots are capable
of reliable operation, they have trouble to be accepted by
humans in the long-term. This issue is noticeable, especially
after the initial excitement of working with robots ceases.
The problem of long-term mobile robot acceptance was
investigated in [3], where the authors conclude that a crucial
factor is the way the robots navigate among humans. Robot
behaviour using traditional navigation approaches is often
considered inappropriate or aggressive [3].

Traditional path planning methods construct the robot path
by considering the environment structure only and deal with
unexpected obstacles in a reactive way. Typically, whenever
a robot encounters an object not present in the original map,
it alters the plan to avoid a collision. When moving around
walking people, a robot is supposed to estimate their veloci-
ties and assess them when replanning its path [4]. However,
the prediction accuracy of state-of-the-art methods does not
allow the robot to plan accurate paths around humans in
temporal horizons exceeding 1 second [5]. Moreover, the
presence of a robot moving in a potentially colliding course
causes people to alter their movement as well as forcing the
robot to replan again. Such situations may result in confusing
behaviour that people perceive negatively.

Instead of relying on reactive approaches, a robot can
plan paths and schedule navigation by considering the typical
movements of people learned from observations. In this way,
a robot can schedule movements at times when locations are
not crowded, and plan paths that either avoid or conform



with the previously observed flows of people. In order to
achieve that, a robot needs to build environment models
capable of capturing and forecasting the densities, directions,
and velocities of pedestrian flow in its operational area.
These models can be used to construct trajectories, which
tend to be less intrusive to people, as they avoid congestion
and other adverse situations [6]. The building, updating, and
refining of models, which represent the spatial structure of
pedestrian flows, was addressed in [6]–[10]. However, one
can go beyond modelling of the spatial flow structure. As
pointed out in [11], densities, velocities and directions of
pedestrian flows vary over time. To address that, several
recent contributions [12]–[16] have designed methods that
can learn these variations from pedestrian data gathered by
mobile robots.

Recently, authors of the works above compared their
models in a joint paper [17] using two different statistics
related to their predictive capabilities. While the paper [17]
provides a fundamental insight into the models’ capabilities,
the authors conclude that another method of comparison is
needed. Analogously to research in simultaneous localisation
and mapping (SLAM), where method evaluation is not based
primarily on the quality of the generated map, but rather
on the accuracy of robot localisation using the map, we
propose to evaluate these “flow maps” through the way they
are actually used. Since the principal purpose in building
pedestrian flow models is to enable unobstructive and safe
path planning, we evaluate the models in terms of the
robot acceptance cost of the generated paths, see Sec. III.
We believe that robot acceptance can be approximated by
counting the number of human-robot encounters, as these
would force the robot and human to alter their path to avoid
each other. Thus, in our experiments, we first train flow
models on real-world data gathered for several weeks and
let these models forecast a robot acceptance cost map of
pedestrian movement for days not present in the training data,
see Sec. III. Then, we use standard methods to generate robot
trajectories that visit several locations in the environment and
check if these trajectories intersect with the trajectories of
pedestrians in the testing dataset. The number of encounters
is then used to measure the utility of a spatio-temporal model
for path planning.

We demonstrate, using the real-world datasets, that the
proposed measures differentiate spatio-temporal models bet-
ter than the usually used ones for this purpose. In the
real robot experiment, we show that the proposed measures
correlate with the experimental results, which indicates the
interpretability of the quality scores. We also show that using
human flow forecasts as priors for navigation tasks leads to
more unobstructive navigation.

II. RELATED WORK

A fundamental capability of any autonomous mobile robot
is navigation. The optimality of the planned path is strongly
influenced by the quality of the robot’s internal model of
the surrounding environment. A substantial factor of the
environment is its dynamics, which is related to the motion

of people throughout the environment [7], [10], [12], [14].
The movement patterns, referred to as pedestrian or traffic
flows, are influenced by the environment structure [18], time
of the day [16], culture and other factors.

The work in [10] demonstrates that knowledge of these
flows enables robots to move in a socially compliant manner,
which has a positive impact not only on their navigation
efficiency but also on their acceptance [3]. One of the first
attempts to characterise the flows extended an occupancy
grid model by gradual propagation of occupancy transitions
from the adjacent cells [8]. A similar grid-based approach
associated an input-output Markov model with each cell
efficiently representing spatial relations of dynamics between
them [7]. In [12], the authors discretise the movement of
people in eight directions and associate each direction with
a temporal model [19] capturing the periodic properties of
the flows.

Other authors tried to model the pedestrian flows by
continuous, rather than discrete representations. The pa-
per [20] learns typical motions of people from long-term
observations. The spatial layout of the flows is represented
by Gaussian processes, and the authors show how their model
can be used to plan robot motion. However, the approach did
not consider the natural multi-modality of pedestrian flow
distributions, e.g. bi-directional flows over a zebra crossing.
A subsequent paper of the authors [21] elaborated on this
particular aspect and presented an improved method capa-
ble of representing multi-modal distributions of pedestrian
movement directions. To overcome the limitations of [8], the
authors have proposed a continuous representation in [9],
[22], which allows learning multi-modal models of flow
directions and velocities from sparse data, using a set of
semi-wrapped Gaussian mixture models. They demonstrated
that their spatio-temporal pedestrian flow model improves
the efficiency of motion planning for a nonholonomic robot
in human crowds [6], [23].

However, the flows do not possess only spatial, but also
temporal structure, because the variations of the flow densi-
ties, velocities and directions are subject to human habits.
Thus, as shown in [12]–[14], [17], pedestrian flows can
be modelled as cycloperiodic processes, i.e. their statisti-
cal properties vary with daily, weekly or other periods.
In particular, the papers [12], [13] apply spectral-temporal
models [19] to the individual cells of a discrete model. To
overcome the problems of discretisation, the authors of [14],
[17] employ the warped-hypertime paradigm [16] in their
approaches. This paradigm represents the time not as a
linear variable, but as a set of multiple dimensions wrapped
into themselves. The aforementioned representation not only
efficiently captures periodic variations of the pedestrian flow
properties but also respects the spatio-temporal continuity of
the flows.

A comparison of the aforementioned spatio-temporal
pedestrian flow models was recently published in [17]. The
predictive capabilities of the models were evaluated by two
different criteria, root-mean-square error (RMSE) [24] and
Chi-square distance [25]. Both methods create a multidimen-



sional histogram of measured values and compare them with
the values predicted by a particular model. As demonstrated
in [26], the resulting model rating may change with different
grid resolutions when using these metrics. The results in [17]
were inconclusive, as the values of RMSE and χ2 distance
did not vary significantly between the methods, and low
RMSE and χ2 distances were achieved by different methods.
Inspired by SLAM evaluation approaches, which benchmark
the quality of the maps by their ability to support accurate
localisation, we propose to evaluate the flow models by their
ability to support unobstructive navigation. Since the flow
models aim to support the planning of safe paths, we propose
to measure the quality of a given model by the number of
encounters with humans, detected in the testing datasets.
Similarly to [27], to reflect the ability of the models to
represent the flow variations over time, we let our robots
not only plan paths but also decide when is the best time to
execute them if they have the opportunity to do so.

III. ACCEPTANCE-BASED EVALUATION

The proposed evaluation method aims to quantify the
model impact on the robot’s navigation ability for social
acceptance of a robot, as in [3]. The evaluation score is
based on the traditional navigation paradigm used in mobile
robotics, where the robot path is calculated by minimising
some criterion, which is usually referred to as a cost. In
order to optimise the path cost, path planning algorithms
have to be able to retrieve the motion cost across each area
of the robot’s operational environment. The projection from
a given position in space to a cost is referred to as a cost
map. A typical cost map, which is based on the environment
structure, encompasses the distance to obstacles, speed of
motion, probability of successful traversal, and other aspects.

In our approach, we are trying to model the robot accep-
tance cost (RA cost) of robot navigation, which quantifies
the discomfort level caused by the robot to the surrounding
humans. For this purpose, we construct the cost map from
the predictions of human flow models. The costs are derived
from the likelihood of human flow at specific positions.
These costs can be interpreted as the likelihood of forcing
humans to alter their paths to avoid the robot presence at
these specific positions. The cost map constructed in this
way is denoted as a robot acceptance cost map (RA cost
map).This RA cost map is then searched by traditional path
planning methods to identify paths with a low probability of
disrupting peoples’ trajectories. Since a good pedestrian flow
model should be able to generate a faithful RA cost map, it
should significantly lower the number of encounters between
a robot navigating through human-populated areas and hu-
mans moving towards their goals. Moreover, a model that
captures how the flow properties change over time should
be able to indicate when to traverse a given environment
without disturbing too many people.

Based on the aforementioned ideas, we suggest two novel
criteria for model quality evaluation. Both of them are calcu-
lated from a set of p imaginary robot navigation scenarios,
each starting at a different time ti, i = 1 . . . p, where a robot

has a starting point and two different points that it needs to
visit in order of its choice. To calculate the path, we create
a cost map, where the costs are predicted by the pedestrian
flow model as specified in Sec. IV-B. Then, we construct
the path using Dijkstra’s method, store its RA cost ci, and
transform the path into a trajectory setting the robot’s speed
to a constant. Then, using the detected human time-space
positions retrieved from the test dataset, we calculate the
number of blind robot-human encounters ei during the robot
movement.

Note that the aim of the evaluation methods is not to
model human or robot behaviour during the encounter, but
to create a tool to measure the difference between a model
and the manifestation of the unknown underlying process.
As such, robot and people are considered blind, entering the
encounters with no reaction to it. The number of these blind
robot-human encounters then expresses how many times the
people or the robot would have to replan their movement.

A. Total Encounters

To obtain the first evaluation criterion, we count all blind
robot-human encounters, referred to as total encounters T E
during all planned passages through the environment,

T E =
p

∑
i=1

ei. (1)

The value T E reflects the model’s overall ability to sup-
port unobstructive planning by preventing the disruption of
pedestrian flows. Lower total encounters mean better human
flow model of the environment.

B. Expected Encounters

The second criterion reflects the similarity between a
model and the spatio-temporal dynamics of the environment.
We assume that a robot using a pedestrian flow model, which
accurately represents how the flow intensities, directions and
velocities change over time, should be able to schedule the
service to navigate at times with a low number of encounters.

We again provide the robot with a set of navigation
scenarios starting at ti. We do not require that the robot
performs every navigation task, but only a certain fraction
of them – we refer to it as the servicing ratio r ∈ [0,1]. With
a lower servicing ratio, the robot has more freedom to decide
when to navigate through the area and when not. This reflects
the situation when the robot has to perform a certain number
of tasks during the day, but it can choose the best times to
do so [27], [28].

Let us have a model that can predict RA path costs ci for
each planned path through the environment. We reorder these
plans in ascending order by ci and reindex them such that
k = 1 . . . p and ck ≤ ck+1 for all k. Then we define service
disturbance E(s) as a sum of blind robot-human encounters
ek during the specific number s of planned passages as:

E(s) =
s

∑
k=1

ek. (2)



Service disturbance corresponds to the situation when the
robot chooses to traverse the environment only s times when
it expects a low number of people, i.e. to avoid expected
high RA path costs. Service disturbance for the methods
investigated in this paper is shown in Fig. 2.

To characterise the ability of the method to predict the
spatio-temporal dynamics of the environment, we define a
function

Q(r) = E (bprc) , (3)

which expresses the dependence of the service disturbance on
the servicing ratio. Function Q(r) is understood as a quantile
function of the distribution of the service disturbance. (Note
that total encounters T E = Q(1) = E (p).) This distribution
reflects the ability of the model to predict the fluctuation
of the encounters in time. The second criterion of model
quality is then defined as the expected value of the service
disturbance:

EE =
∫ 1

0
Q(r)dr, (4)

and we refer to this criterion as expected encounters EE.
The main reason for introducing both criteria, T E and EE,

lies in a difference between time-averaged and time-sensitive
models. For time-averaged models, EE has no meaning, and
its value lies around 1

2 T E (biased by the random ordering
of services). Although there is apparent reason to compare
time-sensitive models by T E, their sensitivity to the time-
dependent changes should be compared by their ability to
correctly predict the (relative) number of people at specific
times, which leads to EE.

C. Details on path planning
For the sake of simplicity, the path planning problem is

cast as a graph search over a two-dimensional grid with a
cell dimension of 0.5 m. Nodes in the graph correspond
to cells on the grid. A directed edge lies between every
node in the graph and each of its eight neighbours on
the grid. The costs of the directed edges are computed by
incorporating predictions from the models of human flows.
We use Dijkstra’s algorithm to find a path from the start node
to the goal that is least expensive in terms of the RA cost.

The models of human flows return the predicted number of
people walking in some direction at some point in space-time
or the likelihood of people going that direction. Construction
of a cost map requires the models to calculate the most likely
RA cost of a robot moving through a given cell in a particular
direction.

Each scenario is inspired by a security robot procedure,
where the robot has to visit a few predefined locations. In
our case, there are one starting and finishing position (A)
and two goal positions (B, C). The robot decides the order
in which it will check the positions B and C, i.e. if it visits
the locations in order (A, B, C, A) or (A, C, B, A). This
decision is deduced from the mean of the costs belonging
to each possible path – the robot chooses the path with the
lower predicted cost.

To model people’s personal space and the robot size,
the path planning method assumes that the radius of the

robot’s social distance is 1 m, and encounter detection is
triggered every 0.1 m along its trajectory. The robot speed
was set to 0.5ms−1. The speed, radius and cell size were
chosen arbitrarily. The encounters are weighted similarly to
the Extended Upstream Criterion [23]. This means that the
highest value (2) represents the blind human-robot encounter
when they are facing each other, while the lowest value
(0) represents the encounter of human and robot moving in
exactly the same direction. The robot performed 597 patrols
during one day between 6:30 am and 8 pm starting every
80s. All models and code of the benchmark framework can
be found online [29]. In the framework, it is possible to run
tests with different speed, and radius of the robot, also there
can be enabled non-uniform weights based on the directions
of the flows during collisions.

D. Other Criteria

In addition to the proposed criteria to measure the quality
of models, we included RMSE and Chi-square between
the cost map predicted by the model and the ground truth
obtained from the testing dataset, following the earlier com-
parison of human flow models [17]. RMSE is widely used
in the time series forecasting:

RMSE =

√√√√ 1
p ·n ·a

p

∑
i=1

n

∑
q=1

a

∑
b=1

(x′i,q,b− y′i,q,b)
2, (5)

normalised as a distribution over the testing space-time
p

∑
i=1

n

∑
q=1

a

∑
b=1

x′i,q,b =
p

∑
i=1

n

∑
q=1

a

∑
b=1

y′i,q,b = 1, (6)

and the Chi-square distance is used to compare histograms:

χ
2distance =

p

∑
i=1

n

∑
q=1

a

∑
b=1

(x′′i,q,b− y′′i,q,b)
2

(x′′i,q,b + y′′i,q,b)
, (7)

normalised over the angles in every cell
a

∑
b=1

x′′i,q,b =
a

∑
b=1

y′′i,q,b = 1 (8)

where p is the number of scenarios, n is the number of
positions, a is the number of angular bins, x′i,q,b, resp. x′′i,q,b is
the normalised value of estimated cost for angle b at position
q in scenario i, and y′i,q,b, resp. y′′i,q,b is the normalised value
obtained from the ground truth at the identical position.

IV. EXPERIMENTAL EVALUATION

A. Evaluation dataset

The approaches described above were evaluated using a
dataset collected in Building M at the University of Technol-
ogy of Belfort-Montbeliard (UTBM). The data recording was
performed by a Velodyne HDL-32E 3D lidar, using a reliable
person detection method [30]. During the data collection,
the lidar remained stationary in the reception room near the
entrance of the building, which allowed to scan the main
activity area of the hall, covering a total area of around
500 m2 (Fig. 1). The data collection was performed on a



full 24/7 basis for three months in 2019, and the dataset
also contains semantic information, including positions of
the entrance, elevator, stairs, corridors etc.

For the purposes of this paper, we restricted the area of
detections to cover only the main entrance hall (approx.
150 m2). The training dataset includes eleven working days
from March 2019 when the students were regularly attending
classes, and the test dataset is the first Monday in April 2019.
Each day contains approximately 300000 human detections.
Every detection is represented by a vector (t,x,y, ẋ, ẏ,φ ,v) –
time of detection, 2d position, 2d velocity, orientation, and
speed of the detected human. Note that (ẋ, ẏ) and (φ ,v) are
mutually convertible.

The 3D lidar was mounted in a reception office at a
height of about 1.2 m, providing a good overview of the
environment for data collection (Fig. 1). The 3D point cloud
generated by the Velodyne lidar was divided into separate
sets using an adaptive clustering method [30]. These clusters
were then classified as human or non-human using a support
vector machine (SVM), and 2D positions of people were
processed by a multi-target tracking method [31] based on a
combination of Unscented Kalman Filter (UKF) and Near-
est Neighbour Joint Probability Data Association method
(NNJPDA). The trajectories calculated by the tracker were
then examined manually, and outliers (e.g. static objects
classified as people) were removed from the dataset.

B. Methods Involved in the Experiments

1) WHyTeS: The main idea of the WHyTeS is the pro-
jection of the data into the multidimensional vector space
(warped hypertime space), where the data forms clusters.
These clusters are understood as different time-dependent
features of the measured phenomena [16]. The method
combines density estimation and the spectral analysis tool
FreMEn [19].

WHyTeS models the flows of people in space-time
(t,x,y, ẋ, ẏ), but for the testing method, we need to estimate
the weights in the space of (t,x,y,φ). Therefore, we create
a grid over (t,x,y, ẋ, ẏ) and calculate for every φ the sum
of predictions in cells that lie between φ − π

8 and φ + π

8 in
every (t,x,y).

2) CLiFF-Map: Circular Linear Flow Field Map (CLiFF-
Map) [9] is a technique for encoding motion patterns proba-
bilistically. The probability density function (PDF) represent-
ing the CLiFF-Map is, for each point in the map, a semi-
wrapped Gaussian mixture model (SWGMM).

The edge weights for the Dijkstra graph are computed
using the Extended Upstream Criterion (EUC) proposed
in [23]. The EUC penalises paths that do not conform to the
underlying CLiFF-Map distribution. In the Dijkstra graph,
the weight of each directed edge is computed using the
CLiFF-Map components at the location of the node to which
the edge leads.

3) STeF-Map: Spatio-Temporal Flow Map (STeF-
Map) [13] is a representation that models the likelihood
of motion directions on a grid-based map by a set of
harmonic functions, which capture long-term changes of

TABLE I
PERFORMANCE OF THE MODELS

Evaluated Total en- Expected χ2 Model error
method counters encounters distance (RMSE)

Occupancy grid 7123 3993 8866 3.65e-06
Means 4185 2353 147769 4.08e-06
CLiFF-Map 3105 1480 144486 3.76e-06

Histogram week 5415 2857 80846 3.65e-06
Prophet 2637 596 59405 3.66e-06
WHyTeS 2835 385 82384 3.67e-06
STeF-Map 1548 332 70535 3.66e-06
Histogram day 2898 323 49981 4.02e-06

crowd movements over time. The underlying geometric
space is represented by a grid, where each cell contains K
temporal models, corresponding to K discretised orientations
of people-motion through the given cell over time. The
temporal models, which can capture patterns of people
movement, are based on the FreMEn framework [19]. The
edge weights for the Dijkstra graph are calculated using the
EUC analogous to the CLiFF-Map application.

4) Other Models: In addition to the above listed state-of-
the-art methods, we include for comparison three historical
average based models and one time series forecasting model,
all of which are commonly used as baseline methods. The
average based models used were: Means, which predicts the
mean of its past measurements for each spatial segment,
and two histograms, Histogram day and Histogram week,
that describe average day and week. Both histograms split
their period into one-hour-long segments and compute the
average value for each segment. The time series forecasting
tool Prophet [32], was trained with measurements condensed
into one-hour-long time steps. All these methods were trained
on individual spatial segments without accounting for spatial
relations. The last model, Occupancy grid, “predicts” at
all cells a constant, which allows for the planning without
forecasting the flow.

C. Expected Results of Models

We propose two criteria to quantify the quality of models,
total encounters T E and expected encounters EE. The nat-
ural assumption is that time-averaged models (CLiFF-Map,
Means) should have higher values of T E and EE compared
to time-sensitive ones (WHyTeS, STeF-Map, Prophet, His-
togram day, Histogram week) and the difference should be
much more significant when comparing EE. Models using
continuous time-forecasting (WHyTeS, STeF-Map, Prophet)
should have a lower EE than discrete ones (Histogram day,
Histogram week). Simple occupancy grid (planning without
forecasting the flow) should achieve the significantly worst
rating, while specialised CLiFF-Map should indicate better
results than Means.

D. Evaluation results

The results of the evaluation, summarised in Table I, show
that the proposed criteria, total encounters and expected en-
counters, can distinguish the quality of each model in a more



interpretative way compared to RMSE and χ2distance. Total
encounters are supposed to measure the similarity between
a given model and the spatial dynamics of the environment,
while expected encounters measures the similarity between a
model and the spatio-temporal dynamics of the environment.
We can see that the Means value of total encounters is
significantly lower than the total encounters for Occupancy
grid. The occupancy grid model “predicts” a constant value
of the social cost over the whole grid, and the Means model
predicts constant values for the social cost over the entire
time. The specialised CLiFF-Map model is the best out
of these three models which do not model the time. The
expected encounters of these methods are very close to one-
half of the total encounters, as expected. CLiFF-Map is
better than Means in all of the criteria presented in Table I.
However, the proposed criteria provide a more intuitive
and interpretable comparison. Contrary to that, traditional
comparison between Occupancy grid and the other two time-
averaged models is counter-intuitive and misleading.

Except for the Histogram week, all models that pre-
dict the spatio-temporal dynamics of the environment reach
significantly lower values of expected encounters than the
time-averaged models. Histogram day achieved the best
expected encounters, while Histogram week failed to learn
usable model and its predictions from the perspective of
the proposed criteria. To understand this result, we have to
point out that the testing data comes from a working day
and Histogram day benefits from that in the comparison.
We can speculate with confidence that its result during
the weekend would be weak because there are no lectures
and human flows indicate very different behaviour. On the
other hand, Histogram week can incorporate the difference
between working days and weekends. However, a large
number of temporal bins along with the short training period
led to a poor model. Both WHyTeS and STeF-Map models
covered three dominant periods in the data including a day
and a week. WHyTeS covered also a period corresponding to
the length of lectures during the working days, see Fig. 3.
Sophisticated temporal modelling methods like WHyTeS and
STeF-Map can compete with specialised histograms based
on big data, while learning from significantly sparser training
data sets [33]. The Prophet model showed that, for relatively
short-term predictions, we can use regular time series fore-
casting methods and expect good results.

It is much harder, if not impossible, to interpret the
characteristics of the predictors in the above way when
analysing the results by RMSE or the χ2 distance. This
comparison supports our hypothesis that the proposed criteria
characterise the predictive power of the spatio-temporal
human flow models in a useful way. The popular and most
common tools do not necessarily indicate how useful the
analysed models are for unobstructive and safe path planning.

More in-depth insight into the dependence of the service
disturbance on the servicing ratio (i.e. the dependence of
encounters on the frequency of the traversals) is provided
in Fig. 2. The graphs indicate that the service disturbance
achieved by the time-averaged models, which neglect the
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Fig. 2. The dependence of the number of encounters (service disturbance)
on the frequency of the traversals (servicing ratio) achieved by different
pedestrian flow models.

temporal variations of the flows, scales linearly with the
servicing ratio. However, time-aware pedestrian flow models
can identify times when the given area is crowded, and
traversing through it will result in a large number of en-
counters. Thus, if allowed, these methods can choose not to
enter the areas during these busy times.

In Fig. 2, the graphs indicate decreases of the service
disturbance by about 80% for time-aware methods allowing
the robot to drop 10-20% of tasks. Compared to traditional
models, which capture the environment structure only, the
well-trained flow representation can reduce the number of
encounters by one order of magnitude at servicing ratio 90%
and by order of two magnitudes at servicing ratio 50%.

The results also indicate that considering the spatio-
temporal layout of the pedestrian flows has a tremendous
impact on the number of people encountered, see total
encounters of STeF-Map in Table I, when compared to the
human flow uninformed baseline (Occupancy grid), which
characterises only the static structure of the environment and
associates each free cell with a fixed cost. Finally, we show
that the expected encounters, which encompasses not only
the ability to construct unobstructive and safe paths, but also
the capability to support decisions when is the best time
to execute them, is significantly lower for the models that
explicitly represent the periodic variations of the pedestrian
flow densities and directions.

E. Real-world experiment

To evaluate the impact of the proposed approach to unob-
structive navigation, we performed two experiments during
December 2019 at the entrance hall of the UTBM. The
experiments were designed by researchers who do not work
at UTBM, the robot used was never deployed at the exper-
imental area before, and there was no advance notification
to anyone involved in the experiment. The models used in
the experiment were built from data collected during March
2019. Note that the models were trained on 14 days of data



TABLE II
COMPARISON OF REACTIVE AND ANTICIPATIVE NAVIGATION

Evaluated Time People People People
behaviour total involved annoyed

Anticipative 9:20-10:00 115 17 0
Reactive 10:00-10:40 132 46 2
Anticipative 16:00-16:40 43 6 0
Reactive 16:40-17:20 23 14 1

collected 8 months in advance. Both experiments followed
the methodology used in the previous section, Sec. III-C.
In each experiment, we allocated two 40 minute slots to
perform 10 patrols, during which the robot had to visit the 3
waypoints, see Fig. 1. The timeslots were chosen according
to the forecasted RA path cost for a patrol performed at a
particular time, see Fig. 3. The consecutive slots should have
roughly the same number of people passing through the area.

The platform used was Toyota’s HSR (Human Sup-
port Robot) robot [34], which was running Toyota’s cus-
tomised navigation method (undisclosable due to non-
disclosure agreement) tailored for human-aware navigation.
This method can detect and avoid people walking in the robot
vicinity. The robot had to perform the patrols to minimise
the time it took to visit the three waypoints.

During one of the timeslots, the robot used the occupancy
grid map to plan its path. It had to perform the patrols
uniformly distributed in time. Thus, the robot did not an-
ticipate people presence, but it could avoid them reactively.
During the other 40-minute timeslot, the robot scheduled
its patrols so that the chance of interfering with people’s
trajectories would be minimised. It also chose the order
of the waypoints, see Sec. III-C and Fig. 1, based on the
predicted probabilistic model. In other words, the robot not
only reacted to the people’s presence, but it anticipated and
adjusted its navigation plan and schedule accordingly in
advance. The minimum time delay between two starts was
set to two minutes, which corresponded to the estimated
maximum time of travel.

While it is known that the perceived need to change one’s
course to avoid the robot is causing discomfort [3], we still
decided to roughly assess the impact of the robot on the
people passing through the area. To do so, we placed 3
paper sheets with removable tags near the 3 waypoints. These
sheets asked the students to remove a tag if they felt that the
robot was causing a nuisance by forcing them to avoid it. The
idea behind this setting was to count how many people were
so distracted by the robot that they perform an intentional
operation as a reaction to the stressing situation.

Table II shows the results of the experiment. The number
of people who walked through the hall during each time
slot can be seen in the column ‘People total’. The column
‘People involved’ indicates the number of people who walk
through the area at the time as the robot. The values in the
column ’People annoyed’ corresponds to the number of tags
removed during each time slot.

As the forecast, shown in Fig. 3, indicates, the number
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Fig. 3. Forecasted (8 month horizon) social cost and timeslots allocated
for the experiment

of people during both experiments was not uniformly dis-
tributed. There was about 70, 90, and 20 people walking
through during 9:50–10:00, 10:00–10:15, and 16:00–16:10,
respectively. The robot that scheduled its patrols, denoted as
Anticipative navigation, chose to perform them in the inter-
vals 9:30–9:50 and 16:20–16:40. Together with the values in
the column ‘People involved’, it indicates that when using
the spatio-temporal model as prior knowledge, the robot can
effectively avoid the most congested times, which follows
the results of the simulated experiments, Table I.

The evaluation of the acceptance of the robot by the
involved pedestrians is far more tricky. We assumed that
meeting fewer people and choosing the direction that suits
the flows better lead to less annoyed people. The values in
the column ‘People annoyed’ indicate that the hypotheses set
in [3] were not disapproved.

V. CONCLUSION

We propose two new criteria, Total encounters and Ex-
pected encounters derived from the proposed service dis-
turbance distribution, to measure the quality of the spatio-
temporal models of human flows. Based on our previous
experience from comparing flow models, we hypothesised
that the traditional methods for their evaluation, based on
measures of difference between the predicted and observed
flows, e.g. root-mean-square error or χ2 distance [13], [35],
do not necessarily reflect the usefulness of these models
for robots moving in human-populated environments. We
argue that in the long-term, social acceptance of robots is
negatively affected by events or “close encounters” where
people feel the need to actively avoid a robot that moves in
their direction [3]. The proposed criteria are derived from the
estimated number of such events. The events are identified
by planning the robot trajectory based on a particular flow
model, and calculating their intersections with trajectories of
humans in the testing datasets.

In the experiments, we show that contrary to the traditional
methods, proposed criteria intuitively distinguish optimised
human flow models. Moreover, a detailed analysis of service
disturbance provides deep insight into the model’s strong
and weak aspects. We also show that models which accu-
rately capture the spatio-temporal distributions of pedestrian
flows allow for planning of trajectories which generate sub-
stantially less human-robot encounters than an uninformed
flow baseline. On testing dataset, the time-sensitive models
were able to reduce the number of encounters by order



of magnitude if the robot was allowed to drop 10% of
the traversals during the busiest times and places, and by
order of two magnitudes when dropping 60% of traversals.
Our experiment with the real robot in the real environment
indicates that scheduling and planning the tasks using the
proposed robot acceptance cost map leads to more socially
acceptable behaviour of a service robot.

In the future, we would like to investigate the balance be-
tween robot acceptance and other (e.g. time, distance) costs
of navigation. Moreover, we want to investigate the influence
of other system components, such as the path planner, on the
robot acceptance cost of navigation. Furthermore, we would
like to run more experiments with a real robot and assess the
long-term acceptance of the robot by an ethnographic study
in cooperation with psychologists.
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