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Abstract— Real-time 3D perception of the environment is
crucial for the adoption and deployment of reliable autonomous
harvesting robots in agriculture. Using data collected with
RGB-D cameras under farm field conditions, we present two
methods for processing 3D data that reliably detect mature
broccoli heads. The proposed systems are efficient and enable
real-time detection on depth data of broccoli crops using the
organised structure of the point clouds delivered by a depth
sensor. The systems are tested with datasets of two broccoli
varieties collected in planted fields from two different countries.
Our evaluation shows the new methods outperform state-of-the-
art approaches for broccoli detection based on both 2D vision-
based segmentation techniques and depth clustering using the
Euclidean proximity of neighbouring points. The results show
the systems are capable of accurately detecting the 3D locations
of broccoli heads relative to the vehicle at high frame rates.

I. INTRODUCTION

In recent years, for a variety of social and economical fac-
tors, there has been a widespread interest in the automation
of harvesting of fruits and vegetables. One major challenge
to the agriculture industry is the access to affordable labour,
as it constitutes an important part of its production costs
and has become progressively expensive and scarce due to a
number of uncertainties ranging from political pressures to
migration dynamics [1]. It is therefore desirable to develop
autonomous systems to harvest at human-level competence,
in terms of both speed and accuracy, to reduce labour and
other operational costs [2]. Robots for agricultural tasks have
been actively developed for over three decades. However,
harvesting is still a labour intensive activity commonly done
by hand due to the limited performance of current robotic
platforms. Consequently, developing an autonomous robotic
harvester capable of reliably identifying vegetable crops
under real-time field conditions is essential to increase yield
and to better control production costs.

A selective robotic harvester usually consists of three inde-
pendent systems, namely, 1) a detection system to identify
and locate the produce, 2) a picking system to physically
manipulate and cut the crop, and 3) a navigation system to
allow the robot to move around the field. A key component
of a harvesting robot is the recognition system to accurately
detect the crop and further determine if it meets the required
quality parameters (e.g, size, colour, ripeness), as a precise
detection allows the harvesting system to physically collect
the crop and then move on to the next harvesting point.
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In this paper we focus on the detection system for har-
vesting crops of broccoli plants and tackle the problem of
detecting broccoli heads in real-time.

Real-time 3D perception of the environment remains a
major challenge and is crucial for the adoption and deploy-
ment of reliable autonomous harvesting robots. This paper
describes two detection systems that operate at high frame
rates on datasets collected with low-cost RGB-D sensors.
The systems’ performance has been evaluated using datasets
acquired in open field conditions in locations in the UK and
Spain. The underlying methods achieve high performance in
detection by exploiting the organized structure of the point
clouds being processed. The presented methods comprises
the following contributions: (1) two efficient systems that
run in real-time and process depth information from point
clouds at a speed of 10 to 15 fps; (2) a simple and effective
algorithm for clustering point clouds that extracts regions
based on depth boundaries and normal vector angular prop-
erties, (3) an extensive evaluation of the methods on datasets
of different broccoli varieties collected from two countries
under real-world field conditions. The experimental evalua-
tion shows that our methods outperforms recent state-of-the-
art methods based on both 2D vision-based segmentation
techniques [3], and 3D clustering based on spatial distances
[4]. Our goal is to develop and demonstrate machine learning
algorithms capable of delivering high classification perfor-
mance and real-time execution.

In the next section, we give a brief overview of related
work. The methodology followed in this work is presented
in Section II, while Section III details our experimental setup
and the evaluation results. The paper is then concluded in
Section IV.

A. Related work

One major challenge in autonomous robotic harvesting is
to reliably identify and locate the crop from other elements
in the background at real-time operating speeds. One com-
mon approach actively being developed uses 2D images as
sensory input, as reflected by the scores of computer vision
based techniques available in the literature [5]. However, 3D
sensors provide information with sufficient accuracy about
the distance from the sensor to the scene, at the expense of
some more computing power.

Over the past few years, deep learning techniques have
been successfully applied in various fields, and have also
recently gained momentum in agriculture [6]. Deep learn-
ing techniques have achieved both high classification per-
formance and real-time execution. Nevertheless, these ap-



proaches are data hungry, as the complexity of problems
requires large amounts of training data and a considerable
annotation effort, both often not readily available and usually
expensive and time consuming to acquire for applications in
agriculture. Bender et al. [7] collected a long-term dataset
of broccoli and cauliflower at different growth stages, and
demonstrated crop detection using a Convolutional Neural
Network (CNN) with a mean average precision (mAP) of
95%. However, this result is for the entire broccoli plant
and not the individual broccoli head, which is necessary
for autonomous harvesting operations. Other approaches for
detection and segmentation based on CNNs for different
crops have also been published in recent years [8], [9].

Several studies on the detection of individual broccoli
crops can be found in the literature. The very first attempt to
accurately locate broccoli heads was developed by Ramirez
[10] using a small set of 13 colour images. The method de-
tected the broccoli crop on the entire plant based on contrast
and statistical texture analysis. Blok et al. [3] described a
system for detecting broccoli heads of two different crop
varieties based on a Law’s texture filter and colour analysis
of the head appearance using colour images. They reported a
precision score of 99.5%, a recall score of 91.2%, and a neg-
ative predictive value of 69.7%. The mean processing time
was around 300 ms per image. More recently, Kusumam et
al. [4] detected broccoli heads in depth images collected with
an RGB-D sensor. They combine an Euclidean clustering
method, a Viewpoint Feature Histogram (VFH) descriptor,
a Support Vector Machine (SVM) classifier, and a temporal
filter to detect the broccoli heads. On two broccoli varieties
they reported an average precision of 95.2% and 84.5%,
respectively, and a mean processing time of 5-6 seconds per
depth image.

As these last two results are the best reported in the litera-
ture for broccoli detection, we use them in our experimental
evaluation as our baseline. We also implement some basic
improvements to the system reported in [4] to boost its time
execution and to ensure a more extensive evaluation.

II. METHODOLOGY

Affordable depth sensors, like the Intel Realsense suite or
the now discontinued Microsoft Kinect, are able to simul-
taneously capture high-resolution colour and depth images
at high frame rates. These depth images can be converted
into organized point clouds, i.e., clouds of 3D points that
maintain a two-dimensional matrix layout, which are useful
in a wide variety of robotics applications. It is also possible
to convert stereo images into organized point clouds provided
that the camera’s intrinsic calibration parameters are known.
The main advantage of these organized point clouds is that
the location of neighbouring points of any other point within
the matrix grid can be retrieved in constant time, making it
unnecessary to run costly searches and drastically speeding
up processing times. In our study we extensively use this
property to process depth data at high frame rates.

To ensure a more complete and fair evaluation of our
system, we have implemented a slightly modified yet faster

version of the method presented by Kusumam et al. in
[4], here dubbed Fast Euclidean Clustering (FEC), and its
results are compared against our two real-time 3D perception
systems called Organised Edges Segmentation (OES) and
Organised Region Growing Segmentation (ORG).

The detection pipeline from [4] included a statistical
outlier removal step, depth-range filtering, Euclidean cluster
extraction, normal estimation, feature extraction, classifica-
tion, and an additional temporal filtering step to improve the
overall classification results. In our FEC pipeline, the outlier
removal and the temporal filter steps were removed, as the
former is computationally expensive and the filtered points
do not affect the clustering step, and the latter is a procedure
added to further improve the classification performance.
Nevertheless, the highest score is used in our comparative
evaluation. We also replaced the the normal estimation step
by the faster Integral Images Normals Estimation method
briefly described in Section II-B.1.

A. Organised clustering pipeline

The two systems presented in this paper involve four
main steps: (1) a preprocessing stage for normal estimation
and for detecting edges on organized point clouds (OES
only) that uses the depth information of neighbouring points
to estimate edge boundaries, (2) a clustering step which
returns a list of clusters of points with common attributes,
(3) a feature extraction step to encode cluster properties, and
(4) a classifier for model learning and to predict broccoli
detections, as shown in Figure 1. We use the algorithms
available as part of the PCL library [11] for processing point
clouds.

B. Preprocessing

1) Integral images normal estimation: Normal estimation
methods commonly work by either computing the normal
of a point as an average of the points within a given
neighbourhood, or by fitting geometric primitives into the
local neighbourhood of the current point. Searching in a
neighbourhood is commonly a slow process for many prac-
tical applications in robotics. Integral images provides a
method for normal estimation on organized clouds [12]. The
algorithm uses the cloud as a depth image while keeping a
2D matrix layout of the data. This allows to quickly create
rectangular areas over which the normals are computed by
taking advantage of the relationship between neighbouring
points without the need for costly searches. The result is
a very efficient method to compute normal vectors using
the inherent grid structure of the point clouds collected by
low-cost RGB-D sensors. We use this algorithm to estimate
normals for the FEC, OES and ORG methods.

2) Organized 3D edge detection: The 3D edge detection
algorithm, introduced by Choi et al. [13], labels points
as edges based on point depth discontinuities. It uses a
tolerance distance to determine the difference in depth values
between neighbouring points. All points within a chosen
neighbourhood are readily accessible using the organized
layout of the point cloud. Similarly, the algorithm uses a



Fig. 1. Real-time broccoli detection system pipeline. The main steps of the pipeline are highlighted by a red bounding box. The input data are the point
cloud frames acquired by the RGB-D sensor. The output is the locations of the broccoli heads detected on each input frame.

neighbourhood size to label points as one of the predefined
types of edges (occluding and occluded in this paper). The
method outputs a set of edge labels that corresponds to all
points in the point cloud.

C. Clustering

The output of this step is a list of clusters. Each cluster
groups points together either because they belong to the same
area bounded by an edge (OES), or because the angle of their
normal vectors and their surface smoothness are within a
similarity threshold (ORG). Firstly, a point is selected by the
algorithm and added to the current cluster while marked as
already processed. Then, it examines four neighbour points
located on the left, right, top and bottom, and adds them to
the cluster if they meet the similarity criteria. For every added
point, its four neighbours are also checked until no more new
points can be added. The cluster is then added to the list of
clusters if it is within a predefined valid size. The algorithm
then starts again with the remaining unprocessed points. The
steps of the clustering process are listed in Algorithm 1.

1) Organized edge clustering: After detecting edges and
labelling the points accordingly, the point cloud is then
processed to extract clusters of points surrounded by the
same edge. The procedure works by grouping points together
that are not part of an edge and spreads to other points in
the immediate vicinity to form clusters as outlined above.

2) Organized region growing clustering: Neighbouring
points are part of the same cluster if the angle of their normal
vectors is within a predefined threshold. Then, some of the
points added to the current cluster are used to make the
region grow if their normal curvature (i.e., the amount of
change in direction of the surface normal) is also within a
threshold value. The idea is to make the region spread to
other points in the vicinity with similar surface curvature.

D. Feature extraction

We use the Viewpoint Feature Histogram (VFH) descrip-
tor, a global 3D feature descriptor that uses the normal
vector angles to represent the properties of data points within
the same cluster. The VFH is computed by estimating a
normalized direction vector between the viewpoint (i.e., the

Algorithm 1: Organized clustering algorithm

1 function OrgClustering(PointCloud, Similaty);
Input : A PointCloud and a Similarity function
Output: A set of Clusters

2 Clusters=[] # list of clusters
3 processed=[PointCloud.size, false] # points processed
4 for point ic in PointCloud do
5 if processed[point ic] then
6 loop # point already processed

7 CurrentCluster=[]
8 processed[point ic]=true
9 for point cs in CurrentCluster do

10 # left, right, top & bottom neighboring points
11 n1, n2, n3, n4 = get four neighbors(point cs)
12 if not processed[n1,n2,n3,n4] then
13 if Similarity(point cs, [n1,n2,n3,n4])

then
14 add PointCloud[n1,n2,n3,n4] to

CurrentCluster
15 processed[n1,n2,n3,n4]=true

16 if max size ≥ CurrentCluster ≥ min size then
17 add CurrentCluster to Clusters

18 return Clusters

position of the sensor) and the cluster centroid. Then the
angles between this vector and the surface normals of all
the points in the cluster are computed to form the histogram
bins of the descriptor. To make the VFH descriptor invariant
to scale, the bins can be normalized using the number
of points in each cluster. The VFH descriptor transforms
individual point characteristics into cluster features useful to
distinguish one cluster from another. For extended details and
a discussion on the VFH descriptor properties, the interested
reader is referred to [14].

E. Classification

For each cluster generated by the pipeline, a corresponding
VFH feature descriptor is produced. These descriptors, in



turn, form the set of training and testing samples to be
classified. All classification results were performed using a
Support Vector Machine (SVM) classifier with the following
parameters: RBF (radial basis function) kernel, C = 2.0,
γ = 0.0078125, and class weights w adjusted inversely
proportional to class frequencies in the input data as wj =
n/(k × nj), where n is the total number of observations;
nj is the number of observations in class j, and k is the
number of classes. These parameters were determined by k-
fold cross validation (k = 5) based on a grid search. The final
classification output of the system pipeline is a set of clusters
representing the locations of broccoli heads. For experiments
on the same set, a proportion of 75% frames with the
annotated data were used for training and the remaining 25%
were processed by the algorithms and used for testing. In any
other case, 100% of one dataset was used for training and
100% of the other set was used for testing.

III. EXPERIMENTAL EVALUATION

A. Datasets

In our experimental evaluation we use two of the same
datasets used in the experiments reported by Kusumam
et al. [4]1. These datasets were acquired in planted farm
fields under different weather conditions using the Kinect 2
sensor (1920×1080 RGB, and 512×424 depth resolution).
The sensor was fixed inside an enclosed box mounted on a
farm tractor for uniform illumination and for protection from
external conditions. The UK set consisted of 600 frames of
the broccoli variety Ironman, while the Spain set included
300 frames of the variety Titanium. 300 frames of the UK
set (UK1) were captured at 7.5 fps with a frame overlap
of 95% and the remaining 300 (UK2) were captured at 3.3
fps with 90% overlap, whilst the Spain set was acquired at
6.4 fps with 94% overlap. Samples of the datasets and the
enclosure setup are shown in Figure 2.

Different broccoli heads are visible in the two datasets. In
the Spain set only one row of the crop is visible, whereas two
rows appear in the UK set. These differences produce points
captured at different distances and also make occlusions
more evident. The average square distance from the nearest
points to the Cartesian coordinate origin is 0.29 m for the
UK set and 0.34 m for the Spain set. In consequence, the
average number of clusters extracted per frame is 48 for
the UK set and 54 for the Spain set. This implies a highly
imbalanced class distribution between positive (i.e., broccoli
heads, 8.3% UK, 5.6% Spain) and negative (i.e., leaves, soil,
etc.) samples. The challenge is to test these different schemes
to evaluate the generalization performance of our systems,
and also to help to decide hardware configurations for the
robotic harvester. To evaluate our systems, we collected
ground truth information by manually annotating all 3D
datasets using a software tool built specially for this task.

1available at https://lcas.lincoln.ac.uk/owncloud/shared/agritech-
datasets/broccoli/broccoli datasets.html

Fig. 2. Shown at the top is the enclosing box mounted at the back of a
tractor while collecting data on a broccoli field in Spain. Below are frame
samples of the UK dataset (first row) and the Spain dataset (bottom row)
collected with this hardware platform. The images on the right column show
in red the ground truth annotation on the datasets. The 3D data on the black
strips is also processed but no colour texture was matched by the sensor on
those regions.

B. Evaluation metrics

1) Confusion matrix evaluation: The purpose of this
evaluation is to compare our results with the segmentation
pipeline published by Blok et al. [3] based on conventional
computer vision techniques. Blok’s results were evaluated
using the ground truth data of 200 images of two broccoli
varieties, acquired with a RGB camera (2448×2050 reso-
lution) in fields in The Netherlands. Table I summarizes
a comparative list of evaluation results between Blok et
al. and our detection pipelines. Even though the results of
Table I show a high precision score for every detection
outcome, conclusions drawn when comparing scores such as
accuracy, recall or specificity might be misleading. Accuracy,
for instance, is a poor performance indicator for datasets with
a highly imbalanced class distribution. For this reason, we
also chose to evaluate performance through Cohen’s kappa
score κ [15], a score that expresses the level of agreement
between the classifier predictions and the ground truth data.
The scores in Table I for each dataset combination indicates
an improved performance from previously published results
[3]. In these experiments, we achieve a high agreement to
the ground truth in all datasets combinations as the κ score
increased from 76.8% to 83.5–96.9%. We also evaluated
the negative predictive value (NPV), i.e., the proportion of
negative results correctly predicted, which increased from
69.7% to 98.5-99.8%.



TABLE I
COMPARISON OF VARIOUS PERFORMANCE SCORES. UK IS A COMBINED

SET OF ALL 600 RGB-D FRAMES FROM UK1 AND UK2. THE BOLD

VALUES ARE THE LOWEST AND HIGHEST SCORES.

Accuracy Precision Recall Specificity NPV κ

Blok et al. [3] 92.4% 99.5% 91.2% 97.9% 69.7% 76.8%
FEC UK v UK 99.4% 99.0% 94.0% 99.9% 99.5% 96.1%
FEC UK v Spain 98.7% 99.7% 85.0% 99.9% 98.6% 91.1%
FEC Spain v Spain 98.8% 96.6% 84.3% 99.8% 99.0% 89.4%
FEC Spain v UK 98.0% 89.6% 78.6% 99.4% 98.5% 82.7%
OES UK v UK 99.9% 98.4% 95.7% 99.9% 99.8% 96.9%
OES UK v Spain 99.3% 98.3% 86.8% 99.9% 99.3% 91.8%
OES Spain v Spain 99.2% 96.9% 88.0% 99.8% 99.3% 91.8%
OES Spain v UK 98.4% 93.0% 77.1% 99.7% 98.6% 83.5%
ORG UK v UK 98.8% 98.8% 87.7% 99.9% 98.8% 92.3%
ORG UK v Spain 96.6% 98.9% 66.3% 99.8% 96.5% 77.6%
ORG Spain v Spain 98.1% 98.6% 83.0% 99.9% 98.1% 89.1%
ORG Spain v UK 98.0% 96.4% 79.8% 99.7% 98.2% 86.3%

2) PRC and IoU overlap evaluation: The second evalua-
tion metric used was a precision-recall curve (PRC). The
PRC is a useful measure of prediction success as it has
been shown to provide a more accurate interpretation of
a classifier performance when the class samples are very
imbalanced [16]. Because a correct detection means that
our systems should cluster the majority of the points within
a broccoli head, the detection success was also evaluated
by measuring the overlap between each positive prediction
and its expected outcome. This overlap was calculated via
the Intersection Over Union (IoU) metric. For each IoU
threshold, we calculate the PRC of all predicted results.
Figure 3 shows selected examples of the average precision
score (APS) computed at different discrimination threshold
settings of the OES, ORG and FEC detection systems for
different IoU threshold values.

The precision is the percentage of correct detections (i.e.,
a sample predicted as broccoli head has indeed been labelled
as broccoli), whilst the recall measures how well a sample
predicted as leaf, soil or any other background element has
been labelled as such. Every PRC plot in Figure 3 shows a
higher area under the curve for smaller IoU threshold values.
This is expected, but the precision and recall do not express
how much of the broccoli head was precisely detected by
the different algorithms. To investigate this further, we use
the mean average precision (mAP) calculated by averaging
the APS over multiple IoU values within the range 0.5-
0.95 in 0.05 steps. This detection evaluation complements
the traditional average precision computed at a single IoU
of 0.5. A complete set of APS values for various datasets
combinations between the three broccoli detection pipelines
is summarized in Table II.

The overall mAP is consistent for the UK set throughout
the evaluation, but it decreases for the Spain dataset. This
is caused by the difference between the area under the PRC
for the lowest and highest IoU values. The mAP is higher
for smaller IoU threshold values, but the difference between
the PRC plots shows that the overlap is more significant
for the curves that are closer together in Fig. 3. However,
the non-segmented areas mainly affect smaller regions and
the overlapped area is sufficient for harvesting crops of

TABLE II
CLASSIFICATION PERFORMANCE ON VARIOUS DATASET COMBINATIONS.

THE TOP 3 ROWS SHOW THE MAP SCORE FOR AN IOU OF 0.5. THE

BOTTOM 3 ROWS ARE THE MAP AVERAGED ACROSS ALL IOU VALUES IN

THE RANGE 0.5-0.95.

FEC OES ORG

UK1 UK2 Spain UK1 UK2 Spain UK1 UK2 Spain

UK1 0.98 0.94 0.78 0.96 0.92 0.79 0.99 0.98 0.95
UK2 0.93 0.94 0.84 0.94 0.93 0.84 0.99 0.99 0.97
Spain 0.95 0.94 0.91 0.88 0.86 0.90 0.98 0.97 0.98

UK1 0.96 0.92 0.56 0.86 0.85 0.54 0.70 0.62 0.57
UK2 0.92 0.92 0.61 0.85 0.85 0.58 0.70 0.62 0.59
Spain 0.94 0.93 0.65 0.78 0.80 0.59 0.69 0.60 0.61

marketable size at overlaps of 0.5 or higher. Moreover, a
robotic harvester offers multiple opportunities for detection,
as small-sized heads will grow to the desired size and will
be harvested in another field pass. Also, the experimental
results on the two datasets show how the variability of the
distance between the sensor and the crop affects the detection
success rate. This is more evident in instances where the
Spain set was used for training and the UK set for testing.
Table II shows a reduction in precision as the IoU threshold
increases, especially for the OES and the ORG algorithms.
These results may suggest some guidelines for the hardware
configuration of an autonomous robotic broccoli harvester.
Figure 4 shows a set of selected examples for all three
detection algorithms.

3) Time performance: One relevant feature of the FEC,
ORG and OES systems is that they achieve processing frame
rates of 3.2, 9.2 and 14.8 fps, respectively, on an Intel i7
processor at 3.7 GHz clock speed. This processing time is
also a significant improvement on related research [3], [4]
and is the result of how the 3D space is explored by the
algorithms. While the FEC searches for neighbouring points
in Euclidean space, both the OES and the ORG methods can
retrieve any point information in constant time by exploiting
the ordered grid of the point cloud. Because other systems in
the robotic harvester also require time to perform their own
operations, an efficient detection system benefits its overall
performance. Thus real-time operation is one of the crucial
requirements of autonomous robotic harvesting applications
to increase yield and reduce other costs.

IV. CONCLUSIONS

The classification results show that the sensor distance
used in the UK and Spain datasets produces a high broccoli
head detection rate and suggests an appropriate hardware
setup for the robotic selective harvester. Comparative ex-
perimental results also show that our methods achieved
both high classification performance and real-time execution
against the best approaches for broccoli detection based on
the Euclidean proximity of points [4] when tested on the
same datasets. Our method also performed favourably against
another broccoli detection algorithm based on a machine vi-



FEC, UK v Spain OES, UK v UK ORG, SP v UK

Fig. 3. Three selected PRC plots showing the classification performance of the detection systems on different training and testing datasets combinations.
Each curve is the PRC at various discrimination threshold settings for different IoU values within the range 0.5-0.95.

Fig. 4. On the top row are selected examples of some of the best detection results from the three algorithms for both datasets. The bottom row shows a
selection of some of the worst detections. The red areas show the detected locations while the green boxes show the true locations.

sion system that uses texture and colour image segmentation
[3]. The clustering strategy implemented by both algorithms
yields a trade-off between area segmented and detection
accuracy, as the size of the clusters extracted provides enough
information for harvesting the most marketable heads. The
evaluation performance shows that the algorithms exhibit
the required detection accuracy and real-time performance
needed for autonomous robotic harvesting applications.

Nevertheless, other improvements can be adopted to fur-
ther enhance the generalization of the proposed systems. An
interesting research direction would be to adopt strategies to
better encode the properties of the broccoli heads to achieve
a more accurate clustering of 3D points. This is important to
estimate more precisely the size of broccoli heads suitable for
today’s market standards. Also, we are currently investigating
Convolutional Neural Networks and related deep learning
techniques, as they have become the method of choice for
many detection and classification problems.
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