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Introduction

Previous work on DeepVerge [1] demonstrated a method to
remotely survey and classify biodiversity levels of roadside verges
(Fig. 1) within Lincolnshire (Fig. 2) to an accuracy of 88.9%. This
study tests the hypothesis that classification can be enhanced by
replacing the nominal classifier with ordinal regression (Fig. 4),
thereby leveraging the ordinal information contained within class
labels when rank consistency is enforced [2].
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Unsu pervised domain adaptation by back—propagation [3] Was Fig. 1 Goal: Classification of roadside verge biodiversity based upon the number of flower species
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Fig. 4 Same class predicted - Nominal classes assume no relationship between each other Fig. 2 Source: Lincolnshire road verge Fig. 3 Target: Norfolk RNRs (red) and
whereas ordinal classes are progressively higher in value survey as used by DeepVerge. Accuracy 88.9% [1] non-RNRs (blue)
Ground truth check and domain adaptation Domain adaptation with ordinal regression
os . [T As class labels are learned via standard back-propagation the feature
SELI o o learning is adapted based upon the domain through gradient reversal.
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Lincolnshire domains (Fig. 8 and 9) show very good results individually.
20% Applying domain adaptation of Lincolnshire with Norfolk (Fig. 6)
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ordinal regression. Accuracy 89.75% regression. Accuracy 95.46% truth is incompatible, or wrong, despite ground truth checks (Fig. 5).
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