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Problem

The overarching project for this work investigates vision 
techniques using machine learning for the context of green-on-
green spraying. So far this has involved ensemble networks and 
multi-spectral imaging, however a common theme is the need to 
train neural networks.

This work employs Particle Swarm 
Optimisation to automatically tune 
hyperparameters such as learning rates 
and weight decay. This is achieved using 
an estimate of a gaussian distribution of 
each weight, combined with gradient 
descent and iterative resampling.

The outcome of training a 
neural network is dependent 
on the hyperparameters 
used. The ideal set varies 
with each dataset; it is 
usually estimated via trial 
and error with expert 
knowledge. The surrounding 
PhD work involves training 
multiple networks on 
multiple datasets, making 
automation very valuable.

Particle Swarm Optimisation (PSO)

The initial results are promising, with the network performance 
gradually improving as expected during training and an accuracy of 
95.91% being achieved on the MNIST test set. One difficulty with 
examining the output is the dimensionality; while testing a network 
trained with the generated hyperparameters shows it has worked, the 
distribution of particles still needs to be checked to validate 
boundaries and other parameters such as particle count, standard 
deviation and the rate used for gradient descent.
Future work includes applying this methodology to a reflective subset 
of an agricultural dataset, as well as visualising the multidimensional 
output of hyperparameters as they change over time.
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When applying PSO to neural networks, thinking of each 
hyperparameter to be optimised as a dimension simplifies the 
explanation. First, arbitrary boundaries are set for each parameter. 
These are used to constrain the particles, as well as initialise them in 
the first iteration. Each particle is assigned a value in each dimension 
based on a uniform distribution between the boundaries, and the 
network is trained using these parameters. The final training loss value 
is used as the cost function to be optimised by the particle swarm.

After this first iteration, and at regular intervals onward, the swarm is 
reinitialised. This is done by approximating the distribution of each 
parameter as a gaussian, with the mean set to the value found by the 
best performing particle, and a standard deviation (arbitrarily) of 0.05. 
A gaussian distribution is used because it still allows for outliers, while 
most particles remain near the
current best position. After runs
between resamples, the
gradient is estimated using the
particle's current and last
position, and gradient descent
is applied with a decreasing rate.
Each particle only changes 3
randomly chosen dimensions,
else too many variables change
and the gradient descent fails
to improve the model.

For the purposes of this work, the MNIST dataset[2] was used with as 
well as a very simple classifier. This was done to reduce the time taken 
to train a network, which could also be done by using a reflective 
sample of a larger dataset in the case of a much larger network.

Particle swarms are a common method used to estimate 
probability distributions. A common example is in Monte Carlo 
Localization[1] for mobile robots, where each particle represents 
a potential position. As more information is gathered about the 
robot's locale, particles are evaluated on the likelihood of being 
the same position as the robot. Over time, the distribution 
reflects a more and more confident estimate of the robot's 
position, to the point it can be assumed accurate. Sampling 
methods such as this are favourable compared to grid-based 
methods, because of the lower memory and processing costs. 
They also scale well, and hence can be run in parallel simply.
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