
Iterative Particle Swarm Optimisation – Hyperparameter Tuning
Grey Churchill
Simon Parsons (Lincoln Centre for Autonomous Systems / UoL), Michal Mackiewicz (Colour and Imaging Lab / UEA)

Introduction Method

Summary

Sub-Heading/References

Results and Conclusions

Grey Churchill <17642848@students.lincoln.ac.uk>*
* AgriFoRwArdS CDT, Robotics Department, University of Lincoln

Problem

The overarching project for this work investigates vision
techniques using machine learning for the context of green-on-
green spraying. So far this has involved ensemble networks and
multi-spectral imaging, however a common theme is the need to
train neural networks.

This work employs Particle Swarm
Optimisation to automatically tune
hyperparameters such as learning rates
and weight decay. This is achieved using
an estimate of a gaussian distribution of
each weight, combined with gradient
descent and iterative resampling.

The outcome of training a
neural network is dependent
on the hyperparameters
used. The ideal set varies
with each dataset; it is
usually estimated via trial
and error with expert
knowledge. The surrounding
PhD work involves training
multiple networks on
multiple datasets, making
automation very valuable.

Particle Swarm Optimisation (PSO)

The initial results are promising, with the network performance
gradually improving as expected during training and an accuracy of
95.91% being achieved on the MNIST test set. One difficulty with
examining the output is the dimensionality; while testing a network
trained with the generated hyperparameters shows it has worked, the
distribution of particles still needs to be checked to validate
boundaries and other parameters such as particle count, standard
deviation and the rate used for gradient descent.
Future work includes applying this methodology to a reflective subset
of an agricultural dataset, as well as visualising the multidimensional
output of hyperparameters as they change over time.

[1] Dellaert et al., ICRA 2, 1322 (1999).
[2] Deng., IEEE Signal Proc. Magazine 29, 141 (2012).

Sub-Heading/Collaborators

www.nanodtc.cam.ac.uk

When applying PSO to neural networks, thinking of each
hyperparameter to be optimised as a dimension simplifies the
explanation. First, arbitrary boundaries are set for each parameter.
These are used to constrain the particles, as well as initialise them in
the first iteration. Each particle is assigned a value in each dimension
based on a uniform distribution between the boundaries, and the
network is trained using these parameters. The final training loss value
is used as the cost function to be optimised by the particle swarm.

After this first iteration, and at regular intervals onward, the swarm is
reinitialised. This is done by approximating the distribution of each
parameter as a gaussian, with the mean set to the value found by the
best performing particle, and a standard deviation (arbitrarily) of 0.05.
A gaussian distribution is used because it still allows for outliers, while
most particles remain near the
current best position. After runs
between resamples, the
gradient is estimated using the
particle's current and last
position, and gradient descent
is applied with a decreasing rate.
Each particle only changes 3
randomly chosen dimensions,
else too many variables change
and the gradient descent fails
to improve the model.

For the purposes of this work, the MNIST dataset[2] was used with as
well as a very simple classifier. This was done to reduce the time taken
to train a network, which could also be done by using a reflective
sample of a larger dataset in the case of a much larger network.

Particle swarms are a common method used to estimate
probability distributions. A common example is in Monte Carlo
Localization[1] for mobile robots, where each particle represents
a potential position. As more information is gathered about the
robot's locale, particles are evaluated on the likelihood of being
the same position as the robot. Over time, the distribution
reflects a more and more confident estimate of the robot's
position, to the point it can be assumed accurate. Sampling
methods such as this are favourable compared to grid-based
methods, because of the lower memory and processing costs.
They also scale well, and hence can be run in parallel simply.

	Slide 1

