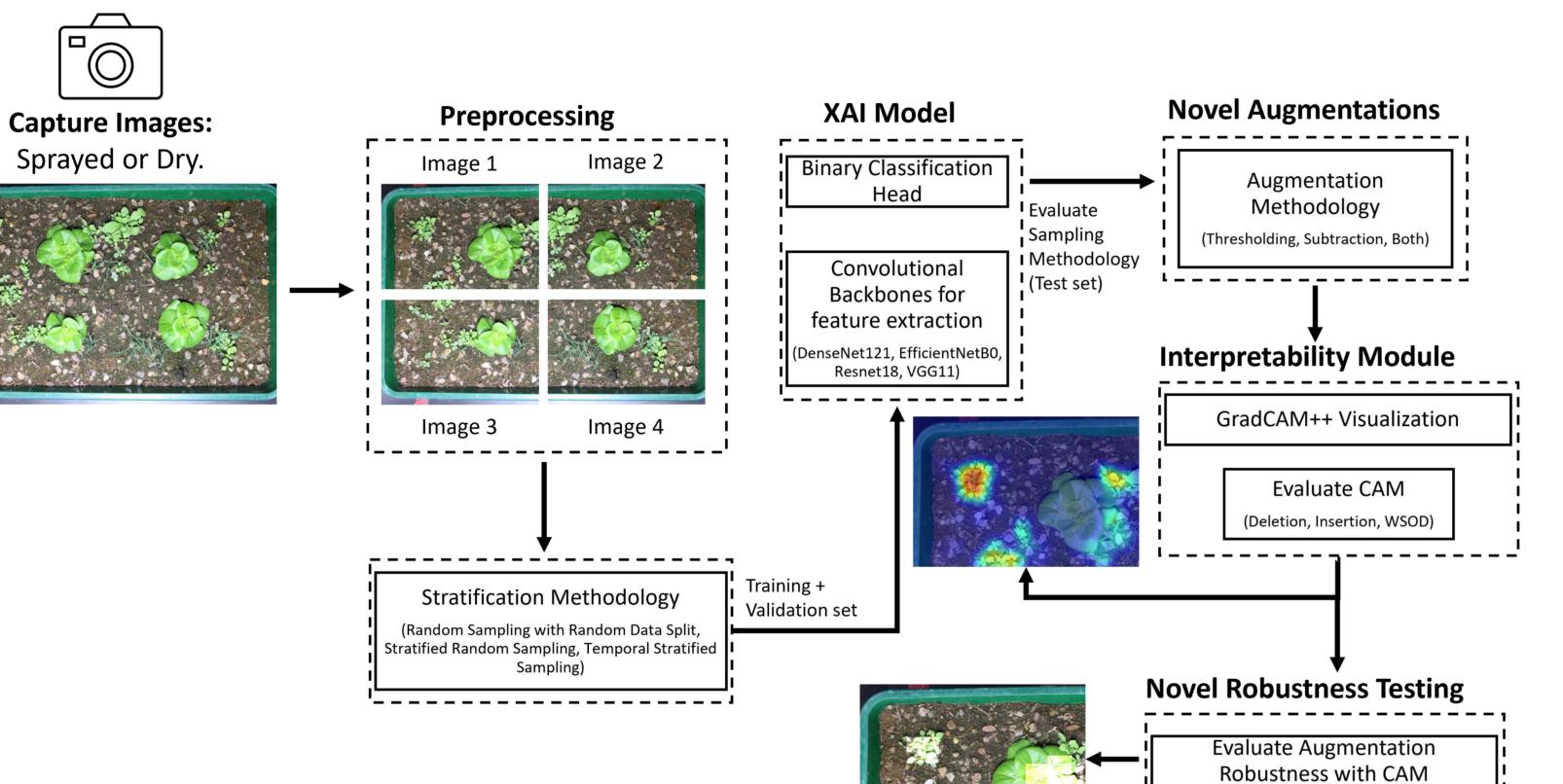


EPSRC Centre for Doctoral Training in Agri-Food Robotics

Closing The Loop On Precision Spraying

Harry Rogers* Beatriz De La Iglesia*, Tahmina Zebin[‡]

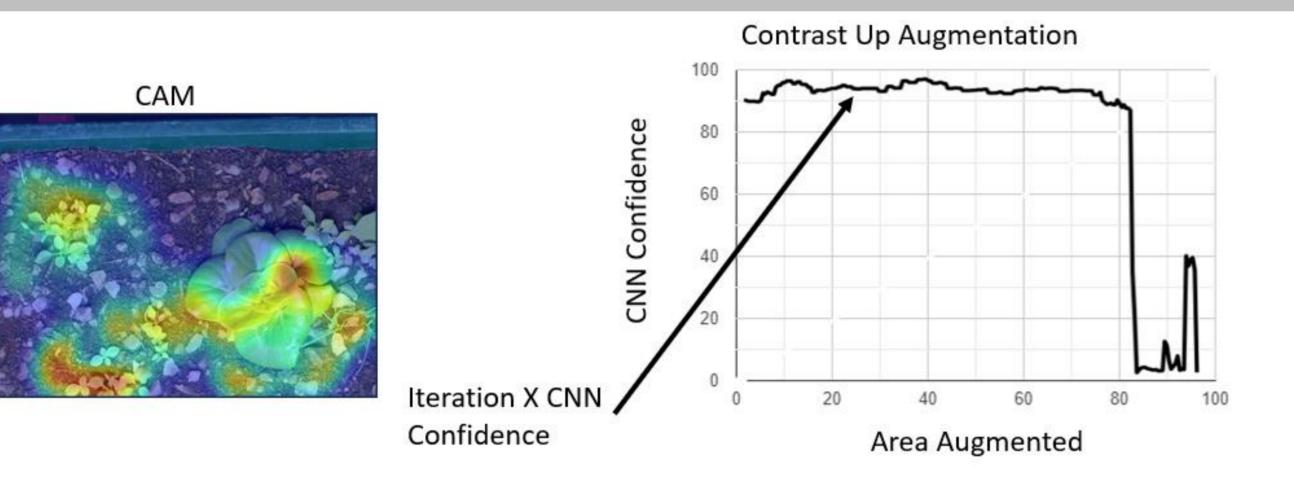

Introduction

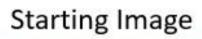
Precision agriculture requires optimised spraying for sustainable chemical use. Current evaluation methods, however, are manual and limited. To address this, we integrated Convolutional Neural Networks and eXplainable AI to develop an automated vision system that identifies spray deposits. Our dataset, enables binary classification and Weakly Supervised Object Localisation.

Classification/Robustness Results

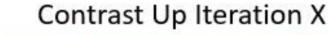
Architectur	e	Augment	tatior)	F1 Score			AUROC			WSOL		
DenseNet121		Non	e	95.1		16 (+1.46)		95.16 (+1.46)			35.44		
		Thresho	lding	93.51				93.55			27.71		
		Subtrac	tion	95	5.16 (+	-1.46)	95	95.16 (+1.46)		28.39		Э	
		Botl	h		88.6	58		88.71			34.47	7	
EfficientNet	80	Non	е	93.5		52		93.55		37.22		2	
		Thresho	lding		91.93			91.94			34.34		
		Subtrac	tion	95	95.16 (+1.46)			95.16 (+1.46)			36.70		
		Botl	h	95	95.16 (+1.46)			95.16 (+1.46)			30.09		
ResNet18		Non	е	96	96.77 (+3.07)			96.77 (+3.07)			38.75		
		Thresho	lding		93.54			93.55			32.62		
		Subtrac	93.54				93.55			37.53			
		Both			93.54			93.55			32.81		
Architecture	Διια	mentation	1 (%)	2 (%)	3 (%)	A (%)	5 (%)	6 (%)	7 (%)	8 (%)	9 (%)		
Alemeetare		mentation	T (70)	2 (70)	3 (70)	- (/0)	5 (70)	0 (70)	/ (/0)	0 (70)	5 (70)	Average	
		None	6	3.91	15.69	4.06	4.36	3.68	10.49	22.61	3.53	8.54	
				0.0 -							0.00		
	Th	resholding	84.45	94.42	52.11	90.57	85.58	93.96	36.99	50.08	93.81	74.69	
DenseNet121						-	_				-		
	Su	ubtraction	91.59	96.35	49.14	92.67	85.32	94.94	34.5	29.24	95.52	72.21	
		Both	85.08	86.84	79.43	85.9	86.62	87.53	84.09	80.77	88.03	84.90	
		None	18.7	11.91	20.4	14.75	18.92	12.65	19.92	19.34	43.75	20.03	

eXplainable AI Pipeline


EfficientNetB0


	Thresholding	77.43	86.23	69.52	82.26	77.26	81.93	64.69	57.8	86.18	75.92
--	--------------	-------	-------	-------	-------	-------	-------	-------	------	-------	-------

Subtraction 84.71 90.14 80.1 89.3 84.93 87.11 79.79 79.16 90.85 85.12


	Both	78.24	90.99	58.09	82.08	88.38	83.48	70.28	40.63	91.23	75.93
	None	3.71	29.09	4.89	32.27	3.63	31.37	4.59	4.71	55.98	18.91
ResNet18											
	Thresholding	76.63	76.2	75.22	76.84	76.18	77.7	73.02	74.21	75.72	75.74
	Subtraction	90.69	92	89.49	91.29	91.09	92.25	84.69	86.93	92.7	90.12
	Both	80.91	80.41	78.78	80.96	79.54	82.05	73	74.33	80.22	78.91

Novel Robustness Testing Pipeline

Final Contrast Up Image

Conclusions and Outlook

We have improved from previous classification scores from [1, 2] by using novel augmentations in our dataset. Moreover, novel robustness testing shows the efficacy of our proposed data augmentations against a baseline of no augmentations.

References

[1] Rogers, H., De La Iglesia, B., Zebin, T., Cielniak, G., Magri, B.: An agricultural precision sprayer deposit identification system. In: 2023 IEEE 19th International

Conference on Automation Science and Engineering (CASE)

[2] Rogers, H., De La Iglesia, B., Zebin, T., Cielniak, G., Magri, B.: An automated precision spraying evaluation system. In: Annual Conference Towards

Autonomous Robotic Systems, p. (2023). Springer

We are building an XAI pipeline which not only enables us to identify spray deposits accurately in a WSOL task; it also provides us with clear identification of the spray locations and enables us to highlight the features that are important to the classification.

Collaborator affiliations

*Agriforwards CDT, School of Computing Science (University of East Anglia) *‡* Brunel University London, School of Computer Science

Engineering and **Physical Sciences Research Council**

