Grzegorz Sochacki
Research Interests
Greg’s research interests include, soft robotics with a focus on sensing.
Publications
- Sochaki, G., Iida, F. and Hughes, J. (2021) ‘Compliant Sensorized Testing Device to Provide a Model-Based Estimation of the Cooking Time of Vegetables‘, 16th International Conference on Intelligent Autonomous Systems.
- Sochacki, G., Hughes, J., Hauser, S., and Iida, F. (2021) ‘Closed-Loop Robotic Cooking of Scrambled Eggs with a Salinity-based ‘Taste’ Sensor‘, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
- Sochacki, G., Hughes, J., and Iida, F. (2022) ‘Sensorized Compliant Robot Gripper for Estimating the Cooking Time of Boil-Cooked Vegetables‘, Intelligent Autonomous Systems 16 (IAS 2021).
- Sochacki, G., Abdulali, A., and Iida, F. (2022) ‘Mastication-Enhanced Taste-Based Classification of Multi-Ingredient Dishes for Robotic Cooking‘, Frontiers in Robotics and AI-Bio-Inspired Robotics.
- Sochacki, G., Abdulali, A., Cheke, L., and Iida, F.(2022) Theoretical Framework for Human-Like Robotic Taste with Reference to Nutritional Needs. IOP Conference Series: Materials Science and Engineering, 1292.
- Shi, J., Abdulali, A., Sochacki, G., & Iida, F. (2023) Closed-Loop Robotic Cooking of Soups with Multi-modal Taste Feedback. Towards Autonomous Robotic Systems. TAROS 2023: Lecture Notes in Computer Science, 14136. Springer, Cham
- Sochacki, G., Abdulali, A., Khadem Hosseini, N., & Iida, F. (2023) Recognition of Human Chef’s Intentions for Incremental Learning of Cookbook by Robotic Salad Chef. IEEE Access, vol. 11, pp. 57006-57020, 2023.
Presentations
- “Residual Physics for Grasp Failure Prediction” (oral) – Lincoln Conference on Intelligent Robots and Systems 2020 [October 2020] – Online.
- “Touch, smell, taste and sound sensing in robotic kitchen” (oral) – International Workshop on Embodied Intelligence 2021 [March 2021] – Online.
- “Visual Serving for Human Tracking and Counting” (oral) – AgriFoRwArdS CDT Summer School 2021 [June 2021] – Online.
- “Compliant Sensorized Testing Device to Provide a Model Based Estimation of the Cooking Time of Vegetables” (oral) – International Conference on Intelligent Autonomous Systems (IAS) 2021 [June 2021] – Online.
- “Closed Loop Action for Robotic Chef Implementation” (oral) – AgriFoRwArdS CDT Annual Conference 2021 [July 2021] – Online.
- “Visual Serving for Human Tracking and Counting” (oral) – AgriFoRwArdS CDT Annual Conference 2021 [July 2021] – Online.
- “Closed-Loop Robotic Cooking of Scrambled Eggs with a Salinity-based ‘Taste’ Sensor” (oral) – International Conference on Intelligent Robots and Systems (IROS) 2021 [October 2021] – Online.
- “Theoretical Framework for Human-Like Robotic Taste with Reference to Nutritional Needs” (oral) – International Conference on Embodied Intelligence 2022 [March 2022]- Cambridge, UK.
- “Unknown title” (oral) – Robosoft 2022 [April 2022] – Edinburgh, UK.
- “Sensorized Compliant Robot Gripper for Estimating the Cooking Time of Boil-Cooked Vegetables” (oral) – International Conference on Intelligent Autonomous Systems (IROS) 2022 [June 2022] – Online.
- “Implementation of taste-enabled robotic chef” (oral) – AgriFoRwArdS CDT Annual Conference 2022 [June 2022] – Lincoln, UK.
- “Stand-Alone, Easy-to-Scale and Low-Overhead Robotic Fish & Chips Dark Kitchen” (oral) – AgriFoRwArdS CDT Summer School 2022 [July 2022] – Norwich, UK.
- “Does Baxter Dream of Electric Beans?” (oral) – AgriFoRwArdS CDT Summer School 2023 [March 2023] – Lincoln, UK.
- “Closed-Loop Robotic Cooking of Soups with Multi-modal Taste Feedback” (oral) – Towards Autonomous Robotic Systems (TAROS) 2023 / AgriFoRwArdS CDT Annual Conference 2023 / Joint Robotics CDT Annual Conference 2023 [September 2023] – Cambridge, UK.
- “Improving Robotic Taste Performance in Classification Task with Mastication” (poster) – Towards Autonomous Robotic Systems (TAROS) 2023 / AgriFoRwArdS CDT Annual Conference 2023 / Joint Robotics CDT Annual Conference 2023 [September 2023] – Cambridge, UK.
Other Activities
- Co-Chaired a breakout session at the International Workshop on Embedded Intelligence 2021
- Designed the robotic kits used for the AgriFoRwArdS Summer School 2021, and provided significant technical support for the event
- Guest on BBC Radio Berkshire
- Discussion Panel member at the AgriFoRwArdS CDT Annual Conference 2021 – Discussion topic: Tony Pridmore’s keynote talk “Plant Phenotyping: Getting to the root of the problem” [July 2021] – Online.
- UKRAS Robot Lab Live 2022 demonstration
- Entered the PUB.R Competition at the International Conference on Robotics and Automation (ICRA) 2023.
MSc Project
Residual Physics for Grasp Failure Prediction
Prediction of grasping success is not a solved problem, with current research focusing on the grasp stability during lifting an object, which is much less then human intuition can do. Human intuition can assess the extent of possible movements, that can be done without losing a grasp of an object. The project attempts to produce an algorithm, which can analyze trajectory plans for a robotic arm and decide if the grasp would remain stable, based on tactile information, series of waypoints, and estimates of object mass and inertia. The chosen approach is to use residual physics, where a coarse physical model is complemented by residua l computed by a neural network. The project hopes to enable choosing optimal paths and maximum speeds for not optimal grasps.
PhD Project
Low-Cost Dextrous Robots for Food and Tool Handling
While the conventional robots are very successful in well-structures and predicable tasks and environments such as automobile assembling factories, they still underperform in unstructured and/or less-predictable tasks such as food preparation, cooking and associated tasks in domestic kitchens. To tackle these challenges, this project aims to develop soft robot manipulators that can perform some of these tasks to help simplify complex operations in kitchens in ordinary houses, possibly in cooperation with human users.
One of the main research drivers of this project is the use of sensorised soft robotic grippers that are able to handle variations of objects such as fruits, vegetables, plates, cooking tools etc. (water taps and dish washers) based on the guidance provided by computer vision. There are four main technological challenges in this domain as follows. First the closed-loop control of soft gripper interacting with a large variety of objects is a fundamental challenge. The use of mechanically adaptable structures needs to be utilised for grasping of a large variety of uncertain objects, while sensoring such systems needs a well-thought integration of soft tactile sensors into advanced feedback control processes, including the strategies to make the entire hardware setup reliable and economical. Second, the use of machine learning for visual recognition of variations of household objects is still a significant challenge particularly in unstructured environment and task, such as cleaning of dishes. And third, the interactions with human users in such an advanced platform are unsolved. What is the framework of human interfaces for complex robots for easy programming and teaching? How can humans give feedback to learning cooking robots? What is the framework of health and safety for such advanced robotic systems in household? The fourth is to address technological challenges allowing cost reduction in order to make robotic solutions more affordable and accessible. By developing this cutting-edge robotics platform in household, we will explore these fundamental questions in this project. The outcome of this project is also contributing to the automation of complex food manipulation tasks in the Agri-Food industry at large.
Greg’s PhD project is being carried out in collaboration with Beko, and with primary supervision by Dr Fumiya Iida.